Advertisement

Ionic Liquids pp 425-444 | Cite as

Polarization Energy in Ionic Melts

  • J. Lumsden

Abstract

The main objective of this chapter is to emphasize the importance of polarization energy in determining the thermodynamic properties of molten salt mixtures. Firstly, consideration is given to those typical ionic compounds, such as alkali metal halides, in which each anion is symmetrically surrounded by cations, so that the anions are unpolarized in the pure salts; it is shown that the main term in the enthalpy of mixing of two molten alkali metal halides with a common anion is the polarization energy due to the dipole generated in the polarizable anion because of the different sizes of its neighboring cations. Secondly, consideration is given to those compounds, such as magnesium chloride, that are generally regarded as not being typically ionic, because they form layer lattices, in which the three cations with which each anion is in contact are all congregated around one hemisphere; it is shown that, because of the ratio of the polarizability of the anion to the cube of the Mg2+-Cl distance, electrostatic asymmetry is to be expected in both solid and liquid magnesium chloride, and the unsymmetrical enthalpy of mixing in a liquid mixture of an atypical and a typical ionic compound is exemplified quantitatively for the MgCl2-CaCl2 system.

Keywords

Magnesium Chloride Electrostatic Energy Lithium Chloride Chloride Anion Coulombic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Forland, Nor. Tek. Vitenskapsakad. 2 (thesis 4) (1957).Google Scholar
  2. 2.
    J. Lumsden, Thermodynamics of Molten Salt Mixtures, Academic, New York (1966), p. 76.Google Scholar
  3. 3.
    K. Furukawa, Discuss. Faraday Soc. 32, 53 (1961).CrossRefGoogle Scholar
  4. 4.
    J. E. Mayer, J. Chem. Phys. 1, 270 (1933).ADSCrossRefGoogle Scholar
  5. 5.
    J. L. Holm and O. J. Kleppa, J. Chem. Phys. 49, 2425 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    L. S. Hersh and O. J. Kleppa, J. Chem. Phys. 42, 1309 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    T. Forland, Discuss. Faraday Soc. 32, 122 (1961).CrossRefGoogle Scholar
  8. 8.
    M. E. Melnichak and O. J. Kleppa, J. Chem. Phys. 52, 1790 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    O. J. Kleppa and M. E. Melnichak, Conference Int. Thermodynam. Chim. (C.R.) 1975, Vol. 3, p. 148.Google Scholar
  10. 10.
    J. Lumsden, Discuss. Faraday Soc. 32, 168 (1961).Google Scholar
  11. 11.
    P. Debye, Polar Molecules, Chemical Catalog, New York (1929), p. 70.zbMATHGoogle Scholar
  12. 12.
    A. Buchler, J. L. Stauffer, W. Klemperer, and L. Wharton, J. Chem. Phys. 39, 2299 (1963).ADSCrossRefGoogle Scholar
  13. 13.
    A. Buehler, J. L. Stauffer, and W. Klemperer, J. Am. Chem. Soc. 86, 4544 (1964).CrossRefGoogle Scholar
  14. 14.
    G. N. Papatheodorou and O. J. Kleppa, J. Chem. Phys. 47, 2014 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    G. N. Papatheodorou and O. J. Kleppa, J. Chem. Phys. 51, 4624 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    K. Grjotneim, J. L. Holm, and J. Malmo, Acta Chem. Scand. 24, 77 (1970).CrossRefGoogle Scholar
  17. 17.
    H. Flood and S. Urnes, Z. Elektrochem. 59, 834 (1955).Google Scholar
  18. 18.
    J. Lumsden, Thermodynamics of Molten Salt Mixtures, Academic, New York (1966), p. 248.Google Scholar
  19. 19.
    K. Pitzer, J. Am. Chem. Soc. 84, 2025 (1962).CrossRefGoogle Scholar
  20. 20.
    M. A. Bredig and H. R. Bronstein, J. Phys. Chem. 64, 64 (1960).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. Lumsden
    • 1
  1. 1.Imperial Smelting Processes LimitedAvonmouth, BristolEngland

Personalised recommendations