Advertisement

Ionic Liquids pp 407-423 | Cite as

Chemical and Electrochemical Studies in Room Temperature Aluminum-Halide-Containing Melts

  • Helena Li Chum
  • R. A. Osteryoung

Abstract

Molten salts have been used in industrial processes, such as for the production of aluminum, for many years. Applications in areas of molten salt battery systems, molten salt nuclear reactors, extraction from metal ores, electrorefining, etc., have prompted researchers to study the fundamental properties of molten salt systems for the past 30 years.1 Recently, owing partly to the relatively low working temperatures (150–200°C), the molten aluminum halides have been widely studied, e.g., AlX3/MX, where M+ is an alkali metal cation.1 Very recently, work on “room temperature” A1X3-based systems has been initiated.

Keywords

Molten Salt Nuclear Quadrupole Resonance Alkali Metal Cation Alkali Metal Halide Potentiometric Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mamantov and R. A. Osteryoung, in Characterization of Solutes in Nonaqueous Solvents, Ed. G. Mamantov, Plenum, New York (1976), pp. 223–249.Google Scholar
  2. 2.
    C. R. Boston, in Advances in Molten Salt Chemistry, Vol. 1, Eds. J. Braunstein, G. Mamantov, and G. P. Smith, Plenum, New York (1971), pp. 129–163.CrossRefGoogle Scholar
  3. 3.
    K. W. Fung and G. Mamantov, in Advances in Molten Salt Chemistry, Vol. 2, Eds. J. Braunstein, G. Mamantov. and G. P. Smith, Plenum, New York (1973), pp. 199–254.CrossRefGoogle Scholar
  4. 4.
    H. L. Jones and R. A. Osteryoung, in Advances in Molten Salt Chemistry, Vol. 3, Eds. J. Braunstein, G. Mamantov, and G. P. Smith, Plenum, New York (1975), pp. 121–176.CrossRefGoogle Scholar
  5. 5.
    J. A. Plambeck, Fused Salt Systems, Vol. X of Encyclopedia of Electrochemistry of the Elements, Ed. A. J. Bard, Marcel Dekker, New York (1976), pp. 233–254.Google Scholar
  6. 6.
    B. Tremillon and G. Letisse, J. Electroanal. Chem. 17, 37 (1968).CrossRefGoogle Scholar
  7. 7.
    G. Torsi and G. Mamantov, Inorg. Chem. 10, 1900 (1971).CrossRefGoogle Scholar
  8. 8.
    A. A. Fannin, L. A. King, and D. W. Seegmiller, J. Electrochem. Soc. 119, 801 (1972).CrossRefGoogle Scholar
  9. 9.
    L. G. Boxall, H. L. Jones, and R. A. Osteryoung, J. Electrochem. Soc. 120, 223 (1973).CrossRefGoogle Scholar
  10. 10.
    L. G. Boxall, H. L. Jones, and R. A. Osteryoung, J. Electrochem. Soc. 121, 212 (1974).CrossRefGoogle Scholar
  11. 11.
    G. Torsi, G. Mamantov, and G. M. Begun, Inorg. Nucl. Chem. Lett. 6, 553 (1970).CrossRefGoogle Scholar
  12. 12.
    S. J. Cyvin, P. Klaeboe, E. Rytter, and H. A. Oeye, J. Chem. Phys. 52, 2776 (1970)ADSCrossRefGoogle Scholar
  13. H. A. Oeye, E. Rytter, P. Klaeboe, and C. J. Cyvin, Acta Chem. Scand. 25, 559 (1971).CrossRefGoogle Scholar
  14. 13.
    G. M. Begun, C. R. Boston, G. Torsi, and G. Mamantov, Inorg. Chem. 10, 886 (1971).CrossRefGoogle Scholar
  15. 14.
    E. Rytter, H. A. Oeye, S. J. Cyvin, B. N. Cyvin, and P. Klaeboe, J. Inorg. Nucl. Chem. 35, 1185 (1973).CrossRefGoogle Scholar
  16. 15.
    K. Balasubrahmanyam and L. Nanis, J. Chem. Phys. 42, 676 (1965).ADSCrossRefGoogle Scholar
  17. 16.
    V. A. Maroni and E. J. Cairns, in Molten Salts—Characterization and Analysis, Ed. G. Mamantov, Marcel Dekker, New York (1969), p. 245.Google Scholar
  18. 17.
    E. Rytter, B. E. D. Rytter, H. A. Oye, and J. Krogh-Moe, Acta Crystallogr. 29B, 1541 (1973)Google Scholar
  19. E. Rytter, B. E. D. Rytter, H. A. Oye, and J. Krogh-Moe, Acta Crystallogr. 31B, 2177 (1975).Google Scholar
  20. 18.
    N. Weiden and A. Weiss, J. Magn. Reson. 30, 403 (1978).Google Scholar
  21. 19.
    T. W. Couch, D. A. Lokken, and J. D. Corbett, Inorg. Chem. 11, 357 (1972).CrossRefGoogle Scholar
  22. 20.
    R. Marassi, G. Mamantov, and J. Q. Chambers, Inorg. Nucl. Chem. Lett. 11, 245 (1975).CrossRefGoogle Scholar
  23. 21.
    R. Marassi, G. Mamantov, and J. Q. Chambers, J. Electrochem. Soc. 123, 1128 (1976).CrossRefGoogle Scholar
  24. 22.
    K. A. Paulsen and R. A. Osteryoung, J. Am. Chem. Soc. 98, 6866 (1976).CrossRefGoogle Scholar
  25. 23.
    B. Gilbert and R. A. Osteryoung, J. Am. Chem. Soc. 100, 2725 (1978).CrossRefGoogle Scholar
  26. 24.
    J. Robinson, B. Gilbert, and R. A. Osteryoung, Inorg. Chem. 16, 3040 (1977).CrossRefGoogle Scholar
  27. 25.
    J. Robinson and R. A. Osteryoung, J. Electrochem. Soc. 125, 1784 (1978).CrossRefGoogle Scholar
  28. 26.
    J. Robinson and R. A. Osteryoung, J. Electrochem. Soc. 125, 1454 (1978).CrossRefGoogle Scholar
  29. 27.
    N. Bjerrum, in Characterization of Solutes in Nonaqueous Solvents, Ed. G. Mamantov, Plenum, New York (1976), pp. 251–271.Google Scholar
  30. 28.
    H. E. Doorenbos, J. C. Evans, and R. U. Kagel, J. Phys. Chem. 74, 3385 (1970).CrossRefGoogle Scholar
  31. 29.
    N. J. Bjerrum, Inorg. Chem. 9, 1965 (1970)CrossRefGoogle Scholar
  32. N. J. Bjerrum, Inorg. Chem. 10, 2578 (1971)CrossRefGoogle Scholar
  33. N. J. Bjerrum, Inorg. Chem. 11, 2648 (1972).CrossRefGoogle Scholar
  34. 30.
    R. Fehrmann, N. J. Bjerrum, and M. A. Andreasen, Inorg. Chem. 15, 2187 (1976).CrossRefGoogle Scholar
  35. 31.
    J. M. von Barnes, N. J. Bjerrum, and D. R. Nielsen, Inorg. Chem. 13, 1708 (1974).CrossRefGoogle Scholar
  36. 32.
    F. W. Paulsen, N. J. Bjerrum, and D. R. Nielsen, Inorg. Chem. 13, 2693 (1974).CrossRefGoogle Scholar
  37. 33.
    D. J. Prince, J. D. Corbett, and B. Garbisch, Inorg. Chern. 9, 2731 (1970).CrossRefGoogle Scholar
  38. 34.
    N. J. Bjerrum and G. P. Smith, J. Am. Chem. Soc. 90, 4472 (1968).CrossRefGoogle Scholar
  39. 35.
    R. Fehrmann, N. J. Bjerrum, and F. W. Paulsen, Inorg. Chem. 17, 1195 (1978).CrossRefGoogle Scholar
  40. 36.
    H. L. Jones, L. G. Boxall, and R. A. Osteryoung, J. Electroanal. Chem. 38, 476 (1972).CrossRefGoogle Scholar
  41. 37.
    H. L. Jones and R. A. Osteryoung, J. Electroanal. Chem. 49, 281 (1974).CrossRefGoogle Scholar
  42. 38.
    D. E. Bartak and R. A. Osteryoung, J. Electrochem. Soc. 122, 600 (1975).CrossRefGoogle Scholar
  43. 39.
    D. E. Bartak and R. A. Osteryoung, J. Electroanal. Chem. 74, 68 (1976).CrossRefGoogle Scholar
  44. 40.
    K. W. Fung, J. Q. Chambers, and G. Mamantov, J. Electroanal. Chem. 47, 81 (1973).CrossRefGoogle Scholar
  45. 41.
    V. R. Koch, L. L. Miller, and R. A. Osteryoung, J. Org. Chem. 39, 2416 (1974).CrossRefGoogle Scholar
  46. 42.
    F. H. Hurley and J. P. Wier, J. Electrochem. Soc. 98, 203 (1951).CrossRefGoogle Scholar
  47. 43.
    H. L. Chum, V. R. Koch, L. L. Miller, and R. A. Osteryoung, J. Am. Chem. Soc. 97, 3264 (1975).CrossRefGoogle Scholar
  48. 44.
    V. R. Koch, L. L. Miller, and R. A. Osteryoung, J. Am. Chem. Soc. 98, 5277 (1976).CrossRefGoogle Scholar
  49. 45.
    H. L. Chum, D. Koran, and R. A. Osteryoung, J. Organomet.Chem. 140, 349 (1977).CrossRefGoogle Scholar
  50. 46.
    H. L. Chum, D. Koran, and R. A. Osteryoung, J. Am. Chem. Soc. 100, 310 (1978).CrossRefGoogle Scholar
  51. 47.
    J. Robinson, R. C. Bugle, H. L. Chum, D. Koran, and R. A. Osteryoung, J. Am. Chem. Soc. 101, 3776 (1979).CrossRefGoogle Scholar
  52. 48.
    C. J. Pickett and D. Pletcher, J. Chem. Soc. Chem. Commun., 660 (1974).Google Scholar
  53. 49.
    E. Peled and E. Gileadi, Plating 62, 342 (1975)Google Scholar
  54. E. Peled and E. Gileadi, J. Electrochem. Soc. 123, 15 (1976).CrossRefGoogle Scholar
  55. 50.
    A. Reger, E. Peled, and E. Gileadi, J. Electrochem. Soc. 123, 639 (1976).CrossRefGoogle Scholar
  56. 51.
    E. Peled, A. Mitaysky, A. Reger, and E. Gileadi, J. Electroanal. Chem. Int. Electrochem. 75, 677 (1977).CrossRefGoogle Scholar
  57. 52.
    E. Peled, A. Mitaysky, and E. Gileadi, Z, Phys. Chem. 96, 111 (1976).Google Scholar
  58. 53.
    S. Ziegel, E. Peled, and E. Gileadi, Electrochim. Acta 23, 363 (1978).CrossRefGoogle Scholar
  59. 54.
    R. J. Gale, B. Gilbert, and R. A. Osteryoung, Inorg. Chem. 17, 2728 (1978).CrossRefGoogle Scholar
  60. 55.
    R. J. Gale and R. A. Osteryoung, Inorg. Chem. 18, 1603 (1979).CrossRefGoogle Scholar
  61. 56.
    J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc. 101, 323 (1979).CrossRefGoogle Scholar
  62. 57.
    C. L. Hussey, L. A. King, and J. S. Wilkes, J. Electroanal. Chem., 102, 321 (1979).CrossRefGoogle Scholar
  63. 58.
    E. Rytter and H. A. Oeye, J. Inorg. Nucl. Chem. 35, 4311 (1973).CrossRefGoogle Scholar
  64. 59.
    G. Torsi and G. Mamantov, Inorg. Chem. 11, 1439 (1972).CrossRefGoogle Scholar
  65. 60.
    H. Lund, Acta Chem. Scand. 11, 1232 (1957).CrossRefGoogle Scholar
  66. 61.
    W. C. Niekam and M. M. Desmond, J. Am. Chem. Soc. 86, 4811 (1964).CrossRefGoogle Scholar
  67. 62.
    E. S. Pysch and M. C. Yang, J. Am. Chem. Soc. 85, 2124 (1963).CrossRefGoogle Scholar
  68. 63.
    R. E. Sioda, J. Phys. Chem. 72, 2322 (1968).CrossRefGoogle Scholar
  69. 64.
    W. C. Herndon, J. Phys. Chem. 98, 887 (1976).Google Scholar
  70. 65.
    F. I. Vilesov, Zn. Fiz. Khim. 35, 2010 (1961).Google Scholar
  71. 66.
    M. Sato and Y. Aoyama, Bull. Chem. Soc. Jpn. 46, 631 (1973).CrossRefGoogle Scholar
  72. 67.
    S. J. Costanzo and W. B. Jurinski, Tetrahedron 23, 2571 (1967).CrossRefGoogle Scholar
  73. 68.
    M. M. Perkampus and Th. Kranz, Z. Phys. Chem. Neue Folge 34, 213 (1962).CrossRefGoogle Scholar
  74. 69.
    M. M. Perkampus and Th. Kranz, Z. Phys. Chem. Neue Folge 38, 295 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Helena Li Chum
    • 1
  • R. A. Osteryoung
    • 1
  1. 1.Department of ChemistryState University of New YorkBuffaloUSA

Personalised recommendations