Ionic Liquids pp 363-386 | Cite as

Studies of Molten Mixtures of Halides and Chalcogenides

  • H. C. Brookes

Abstract

Sulfide ores are amongst the major nonferrous base metal minerals mined today, and have been for many decades. Many sulfides are semiconductors in the solid state and considerable electrochemical investigation of this property at room temperature has been described.1 Despite the fact that many of the industrially important reactions of extractive metallurgy concern sulfide minerals and involve high-temperature chemistry (400–1200°C) in the molten state, few overviews are available concerning the chemistry of molten chalcogenides when mixed with other melts, as is usually the case industrially.

Keywords

Molar Volume Metal Chloride Sulfide Concentration Excess Enthalpy Silver Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trends in Electrochemistry,Eds. J. O’M. Bockris, D. A. J. Rand, and B. J. Welch, Plenum, New York (1976), p. 267.Google Scholar
  2. 2.
    H. C. Brookes, H. J. Coppens, and A. D. Pelton, J. Chem. Soc. Faraday Trans. 1, 74, 2193 (1978).CrossRefGoogle Scholar
  3. 3.
    M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 111, 569, 1440 (1964), and personal communication.Google Scholar
  4. 4.
    M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 111, 575 (1964).Google Scholar
  5. 5.
    R. Blachnik and Hoppe, J. Chem. Thermodyn. 8, 631 (1976).Google Scholar
  6. 6.
    M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 113, 27 (1966).CrossRefGoogle Scholar
  7. 7.
    M. C. Bell and S. N. Flengas, J. Electrochem. Soc. 113, 31 (1966).CrossRefGoogle Scholar
  8. 8.
    A. K. Garbee and S. N. Flengas, J. Electrochem. Soc. 119, 631 (1972).CrossRefGoogle Scholar
  9. 9.
    L. Yang, G. M. Pound, and G. Derge, Trans. AIME, J. Met. 206, 783 (1956).Google Scholar
  10. 10.
    P. Hagenmuller, J. Rouxel, J. David, A. Colin, and B. Le Neidr, Z. Anorg. Allg. Chem. 1, 323 (1963).Google Scholar
  11. 11.
    P. Palvadeau and J. Rouxel, Bull. Soc. Chim. Fr., 2698 (1967).Google Scholar
  12. 12.
    J. Rouxel and P. Palvadeau, Bull. Soc. Chim. Fr., 2044 (1967).Google Scholar
  13. 13.
    G. Handfield, M. D’Amboise, and M. Bourgon, Can. J. Chem. 44, 853 (1966).CrossRefGoogle Scholar
  14. 14.
    V. M. Glazov and N. M. Makhmudova, Izvest. Akad. Nauk. SSSR Neorg. Mater. 6, 1409 (1970).Google Scholar
  15. 15.
    F. G. Bodewig and J. A. Plambeck, J. Electrochem. Soc. 117, 618 (1970).CrossRefGoogle Scholar
  16. 16.
    J. Robinson, B. Gilbert, and R. A. Osteryoung, Inorg. Chem. 16, 3040 (1977).CrossRefGoogle Scholar
  17. 17.
    F. G. Bodewig and J. A. Plambeck, J. Electrochem. Soc. 116, 607 (1969).CrossRefGoogle Scholar
  18. 18.
    J. Greenberg, B. R. Sundheim, and D. M. Gruen, J. Chem. Phys. 29, 461 (1958).ADSCrossRefGoogle Scholar
  19. 19.
    G. Delarue, Bull. Soc. Chim. Fr., 906, 1654 (1960).Google Scholar
  20. 20.
    W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).CrossRefGoogle Scholar
  21. 21.
    S. K. Chang and J. M. Toguri, J. Chem. Thermodyn. 7, 423 (1975).CrossRefGoogle Scholar
  22. 22.
    S. Djierle, Acta Chem. Scand. 12, 1427 (1958).CrossRefGoogle Scholar
  23. 23.
    R. Blachnik and H. Kahleyss, Thermochim. Acta 3, 145 (1971).CrossRefGoogle Scholar
  24. 24.
    R. Blachnik and G. Kudermann, Z. Naturforsch. 286, 1 (1973).Google Scholar
  25. 25.
    T. Takahashi, O. Yamamoto, and H. Honi, Denki Kagaku 35, 181 (1967).Google Scholar
  26. 26.
    R. Blachnik and J. E. Alberts, Z. Naturforsch. 316, 163 (1976), and personal communication.Google Scholar
  27. 27.
    D. N. Gruen, R. L. McBeth, M. S. Foster, and C. E. Crouthamel, J. Phys. Chem. 70, 472 (1966).CrossRefGoogle Scholar
  28. 28.
    L. G. Boxall, H. L. Jones, and R. A. Osteryoung, J. Electrochem. Soc. 121, 212 (1974).CrossRefGoogle Scholar
  29. 29.
    H. C. Brookes and H. J. Coppens, previously unpublished work on T12S + TICI mixtures.Google Scholar
  30. 30.
    D. Inman, A. D. Graves, and A. A. Nobile, Specialist Periodical Reports, Electrochemistry Vol. 2, The Chemical Society, London (1972), p. 77.Google Scholar
  31. 31.
    R. Blachnik and J. Schöneich, Z. Anorg. Allg. Chem. 429, 131 (1977).CrossRefGoogle Scholar
  32. 32.
    Characterization of Solutes in Non-aqueous Solvents,Ed. G. Mamantov, Plenum, New York (1978).Google Scholar
  33. 33.
    L. M. Toth and B. F. Hitch, Inorg. Chem. 17, 2207 (1978).CrossRefGoogle Scholar
  34. 34.
    C. E. Bamberger, J. P. Young, and R. G. Ross, J. Inorg. Nucl. Chem. 36, 1158 (1974).CrossRefGoogle Scholar
  35. 35.
    K. Paulsen and R. A. Osteryoung, J. Am. Chem. Soc. 98, 6866 (1976).CrossRefGoogle Scholar
  36. 36.
    D. M. Gruen, R. L. McBeth, and A. J. Zielen, J. Am. Chem. Soc. 93, 6691 (1971).CrossRefGoogle Scholar
  37. 37.
    W. Giggenbach, Inorg. Chem. 10, 1308 (1971).CrossRefGoogle Scholar
  38. 38.
    J.-P. Bernard, A. de Haan, and H. van der Poorten, C.R. Acad. Sci. Ser. C 276, 587 (1973).Google Scholar
  39. 39.
    B. Cleaver, A. J. Davies, and D. H. Schiffrin, Electrochim. Acta 18, 747 (1973).CrossRefGoogle Scholar
  40. 40.
    C. H. Liu, A. J. Zielen, and D. M. Gruen, J. Electrochem. Soc. 120, 67 (1973).CrossRefGoogle Scholar
  41. 41.
    P. L. King and B. J. Welch, Proc. Australas. Inst. Min. Metall., 246, 7 (1975).Google Scholar
  42. 42.
    W. T. Thompson and S. N. Flengas, Can. J. Chem. 46, 1611 (1968).CrossRefGoogle Scholar
  43. 43.
    F. G. Bodewig and J. A. Plambeck, J. Electrochem. Soc. 117, 904 (1970).CrossRefGoogle Scholar
  44. 44.
    J. H. Kennedy and F. Adams, J. Electrochem. Soc. 119, 1518 (1972).CrossRefGoogle Scholar
  45. 45.
    Proceedings of the International Symposium on Molten Salts,Ed. J. P. Pemsler et al.,Electrochemical Society, New Jersey (1976).Google Scholar
  46. 46.
    C. A. Melendres, C. C. Sy, and B. Tani, J. Electrochem. Soc. 124, 1060 (1977).CrossRefGoogle Scholar
  47. 47.
    B. Tani, Am. Mineral 62, 819 (1977).Google Scholar
  48. 48.
    A. N. Belous, T. A. Kusnitsyna, and A. A. Velikanov Elektrokhim. Terrnodin. Sroistra Ionnykh Rasplavos53 (1977).Google Scholar
  49. 49.
    A. D. Pelton and S. N. Flengas, Can. J. Chem. 48, 2016 (1970).CrossRefGoogle Scholar
  50. 50.
    M. L. Sholokhovich, D. S. Lesnyk, and G. A. Buchalova, Dokl..Akad. Nauk. S.S.S.R. 103, 261 (1955).Google Scholar
  51. 51.
    B. Reuter and K. Hardel, Z. Anorg. Chem. 340, 158 (1965).CrossRefGoogle Scholar
  52. 52.
    R. Blachnik and F. W. Kasper, Z. Naturforsch. 296, 159 (1974).Google Scholar
  53. 53.
    A. V. Novoselova, I. N. Odin, V. A. Trifonov, and B. A. Popovkin, Izr. Akad. Nauk. S.S.S.R. Neorg. Mater. 3, 2101 (1967).Google Scholar
  54. 54.
    A. V. Novoselova, I. N. Odin, N. R. Valitova, and B. A. Popovkin, Lc. Akad. Nauk S.S.S.R. Neorg. Mater. 4, 777 (1968).Google Scholar
  55. 55.
    A. V. Novoselova, I. N. Odin, and B. A. Popovkin, Izr. Akad. Nauk S.S.S.R. Neorg. Mater. 2, 1397 (1966).Google Scholar
  56. 56.
    A. V. Novoselova, I. N. Odin, and B. A. Popovkin, L - c. Akad. Nauk S.S.S.R. Neorg. Mater. 6, 381 (1970).Google Scholar
  57. 57.
    A. V. Novoselova, 1. N. Odin, L N. Fedoseeva, and B. A. Popovkin, Lc. Akad. Nauk S.S.S.R. Neorg. Mater. 6, 135 (1970).Google Scholar
  58. 58.
    A. V. Novoselova, I. N. Odin, and B. A. Popovkin, Izr. Akad. Nauk S.S.S.R. Neorg.,dater. 6, 257 (1970).Google Scholar
  59. 59.
    I. S. Morozov and C. F. Li, Zh. Neorg. Khim. 8, 1688 (1962).Google Scholar
  60. 60.
    A. V. Novoselova, M. K. Todriya, I. N. Odin, and B. A. Popovkin, Izr. Akad. Nauk S.S.S.R. Neorg. Mater. 7, 500 (1971).Google Scholar
  61. 61.
    A. V. Novoselova, M. K. Todriya, I. N. Odin, and B. A. Popovkin, Izv. Akad. Nauk Neorg. Mater. 7, 1266 (1971).Google Scholar
  62. 62.
    A. V. Novoselova, I. N. Odin. and B. A. Popovkin, Zh. Neorg. Khim, 2659 (1969).Google Scholar
  63. 63.
    L. S. Darken, Trans. AIME 239, 80 (1967).Google Scholar
  64. 64.
    Y. Nakamura, personal communication.Google Scholar
  65. 65.
    D. K. Belaschenko, I. A. Magidson, and F. L. Konopelko, Arabi. Fiz. Z. 12, 66 (1967).Google Scholar
  66. 66.
    A. A. Velikanov and V. F. Zinchenko, Electrochem. 11, 1862 (1975).Google Scholar
  67. 67.
    A. Rabenau and H. Rau, Z. Anorg. Allg. Chem. 369, 295 (1969).CrossRefGoogle Scholar
  68. 68.
    A. V. Novoselova, I. N. Odin, and B. A. Popovkin, Zh. Neorg. Khim. 14, 1402 (1969).Google Scholar
  69. 69.
    A. Rabenau, H. Rau, and G. Rosenstein, Z. Anorg. Allg. Chem. 374, 43 (1970).CrossRefGoogle Scholar
  70. 70.
    R. Blachnik, personal communication.Google Scholar
  71. 71.
    L. S. Darken, Trans. AIME 239, 90 (1967).Google Scholar
  72. 72.
    J. Lumsden, Thermodynamics of Molten Salt Mixtures, Academic, New York (1966).Google Scholar
  73. 73.
    G. J. Janz, Molten Salts Handbook, Academic, New York (1967).Google Scholar
  74. 74.
    Handbook of Chemistry and Physics, Ed. R. C. Weast, Chemical Rubber, Cleveland (1971–1972), B244.Google Scholar
  75. 75.
    Molten Salts: Characterization and _Analysis, Ed. G. Mamantov, Marcel Dekker. New York (1969).Google Scholar
  76. 76.
    F. R. Mrazek and J. E. Battles, J. Electrochem. Soc. 124. 1556 (1977).CrossRefGoogle Scholar
  77. 77.
    T. Takahashi, K. Kuwabara, O. Yamamoto, and S. Watanabe, Denki Kagaku, 37, 717 (1969).Google Scholar
  78. 78.
    A. E. Io1Te and A. R. Regel, Progr. Semicond. 4, 239 (1960).Google Scholar
  79. 79.
    A. Epstein and H. Fritzsche, Phys. Rets. 93, 922 (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • H. C. Brookes
    • 1
  1. 1.Department of ChemistryUniversity of NatalDurbanSouth Africa

Personalised recommendations