Skip to main content

Water in Molten Salts: Industrial and Electrochemical Consequences

  • Chapter
Ionic Liquids

Abstract

Now approaching its centenary, the Hall-Héroult electrolytic aluminum extraction cell1,2 still reigns supreme as the largest industrial application of molten salts. Although rivals are now reappearing,3 the most likely contender would merely involve a change from molten cryolite-alumina to a chloroaluminate, with a small reduction in temperature. Nevertheless, the rapid growth of molten salt technologies awaited the electrolytic separation of uranium from molten fluorides in the Manhattan project of the mid-1940s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Héroult, Fr. Pat. 175711 (April 23, 1886 ).

    Google Scholar 

  2. C. M. Hall, U.K. Pats. 5669, 5670 (April 2, 1889 ).

    Google Scholar 

  3. G. A. Wolstenholme, Chem. Ind. (London) 9, 383 (1975);

    Google Scholar 

  4. also N. E. Richards in Electrochemistry, the Past Thirty and the Next Thirty Years, Eds. H. Bloom and F. Gutmann, Plenum, New York (1977).

    Google Scholar 

  5. M. Galopin and J. S. Daniel, Electrodeposition Surf. Treat. 3. 1 (1975).

    Article  Google Scholar 

  6. W. R. Grimes and S. Cantor, in The Chemistry of Fusion Technology, Ed. D. M. Gruen, Plenum, New York (1972).

    Google Scholar 

  7. G. Long, UKAEA, AERE Report M-1925 (1967).

    Google Scholar 

  8. D. A. J. Swinkels, in Advances in Molten Salt Chemistry, Vol. 1, Eds. J. Braunstein, G. Mamantov, and G. P. Smith, Plenum, New York (1971);

    Google Scholar 

  9. see also Extended Abstracts, 154th Meeting Electrochemical Society, Pittsburgh (1978).

    Google Scholar 

  10. K. V. Kordesch, J. Electrochem. Soc. 125, 77C (1978).

    Article  ADS  Google Scholar 

  11. M. R. Edwards and D. G. Lovering, Int. Metals Rev., 123 (1976).

    Google Scholar 

  12. D. Inman and D. E. Williams, in Electrochemistry, the Past Thirty and the Next Thirty Years, Eds. H. Bloom and F. Gutmann, Plenum, New York (1977).

    Google Scholar 

  13. W. Sundermeyer, Angew. Chem. (Int. Ed.) 4, 222 (1965).

    Article  Google Scholar 

  14. D. H. Kerridge, M.T.P. Int. Rec. Sci. Inorg. Chem. Series One, Vol. 2, Butterworths, New York (1972).

    Google Scholar 

  15. B. W. Hatt and W. D. Read, paper presented at a meeting of the Molten Salt Discussion Group, Southampton University (April 1978).

    Google Scholar 

  16. B. W. Hatt and M. J. Pitt, paper presented at a meeting of the Molten Salt Discussion Group, Southampton University (April 1978).

    Google Scholar 

  17. A. Bonomi, M. Lavaidy, and C. Gentaz, paper presented at EUCHEM Molten Salt Meeting, Noordwijkerhout, Holland (1976).

    Google Scholar 

  18. K. E. Johnson, in Metal-Slag-Gas Reactions and Processes, Eds. Z. A. Foroulis and W. W. Smeltzer, Electrochemical Society, New Jersey (1975), p. 581.

    Google Scholar 

  19. R. Battino and H. L. Clever, Chem. Rev. 66, 395 (1966).

    Article  Google Scholar 

  20. M. S. Hull and A. G. Turnbull, J. Phys. Chem. 74, 1783 (1970).

    Article  Google Scholar 

  21. E. R. Buckle and R. R. Finbow, Int. Metals Rec., 197 (1976).

    Google Scholar 

  22. J. Braunstein, Inorg. Chini. Acta. Rev. 2, 19 (1968).

    Article  Google Scholar 

  23. W. J. Burkhard and J. D. Corbett, U.S. Atom Energy Comm. Report ISC-929 (1957);

    Google Scholar 

  24. W. J. Burkhard and J. D. Corbett, J. Am. Chem. Soc. 79, 6361 (1957).

    Article  Google Scholar 

  25. F. Colom and A. Bodalo, Collect. Caech. Chem. Commun. 36, 674 (1971).

    Article  Google Scholar 

  26. F. Colom and A. Bodalo, Corros. Sci. 12, 731 (1972).

    Article  Google Scholar 

  27. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1953).

    Google Scholar 

  28. S. Cantor and W. R. Grimes, Nucl. Tech. 22, 120 (1974).

    Google Scholar 

  29. D. R. Holmes and G. M. W. Mann, Corrosion 21, 370 (1965).

    Article  Google Scholar 

  30. D. Lewis, D. G. Lovering, and B. Svensson, AB Atomenergi Report AE-RKK-381 (1969).

    Google Scholar 

  31. D. G. Lovering, Final Contract Report to NRDC/Rolls-Royce Ltd. (1970), and Extended Abstracts 23rd I.S.E. Meeting, Stockholm (1972), p. 103.

    Google Scholar 

  32. A. J. Arvia, R. C. V. Piatti, and J. J. Podesta, Electrochim. Acta 17, 889 (1972).

    Article  Google Scholar 

  33. A. J. Arvia, R. C. V. Piatti, and J. J. Podesta, Electrochim. Acta 16, 1797 (1971);

    Article  Google Scholar 

  34. A. J. Arvia, R. C. V. Piatti, and J. J. Podesta, Electrochim. Acta 17, 901 (1972).

    Article  Google Scholar 

  35. E. L. Krongauz, V. D. Kascheev, and V. B. Busse-Machukas, Soc. Electrochem. 8. 1219 (1972).

    Google Scholar 

  36. A. K. Turner, Ph.D. thesis, London (1978).

    Google Scholar 

  37. Encyclopaedia of Electrochemistry of the Elements,Vol X, Fused Salt Systems,by J. A. Plambeck, Series Ed. A. J. Bard, Marcel Dekker, New York (1976).

    Google Scholar 

  38. R. C. Howie and D. W. MacMillan J. Appl. Electrochem. 2, 217 (1972).

    Article  Google Scholar 

  39. B. Nayak and M. M. Misra, J. Appl. Electrochem. 7, 45 (1977).

    Article  Google Scholar 

  40. B. Nayak and M. M. Misra, J. Appl. Electrochem. 9, 699 (1979).

    Article  Google Scholar 

  41. J. M. West, Electrodeposition and Corrosion Processes, VNR, London (1971).

    Google Scholar 

  42. K. Grjotheim, Can. Metall. Q. 11, 585 (1972).

    Article  Google Scholar 

  43. W. E. Haupin, J. Electrochem. Soc. 107, 232 (1960).

    Article  Google Scholar 

  44. J. K. Wright, Miner. Sci. Eng. 5, 119 (1973).

    Google Scholar 

  45. M. I. Brittan and R. R. Liebenberg, Trans. Inst. Min. Met. 80, C156, C262 (1971).

    Google Scholar 

  46. M. I. Brittan, J.S.A. Inst. Min. Met. 71, 87 (1970).

    Google Scholar 

  47. F. R. Duke, in Mechanisms of Inorganic Reactions, Advances in Chemistry Series No. 49, American Chemical Society, Washington, D.C. (1965), p. 220.

    Google Scholar 

  48. R. F. Bartholomew and H. M. Garfinkel, J. Inorg. Nucl. Chem. 31, 3655 (1969).

    Article  Google Scholar 

  49. R. B. Temple and F. W. Thickett, Aust. J. Chem. 26, 667 (1973).

    Google Scholar 

  50. P. G. Zambonin, J. Electroanal. Chem. 32, App. 1 (1971).

    Google Scholar 

  51. H. S. Swofford and H. A. Laitinen, J. Electrochem. Soc. 110, 814 (1963).

    Article  Google Scholar 

  52. T. E. Geckle, M.S. thesis, Pennsylvania State University (1964).

    Google Scholar 

  53. M. Peleg, J. Phys. Chem. 71, 4553 (1967).

    Article  Google Scholar 

  54. G. J. Hills and P. D. Power, J. Polarog. Soc. 13, 71 (1967).

    Google Scholar 

  55. P. G. Zambonin, J. Electroanal. Chem. 24, 365 (1970).

    Article  Google Scholar 

  56. M. Francini and S. Martini, Electrochim. Acta 13 851 (1968).

    Google Scholar 

  57. Yu. S. Lyalikov and R. M. Novik, Uch. Zap. Kishineusk. Gos. Unit. 27, 61 (1957).

    Google Scholar 

  58. P. G. Zambonin, F. Paniccia, and A. Bufo, J. Phys. Chem. 76, 422 (1972).

    Article  Google Scholar 

  59. P. G. Zambonin, Anal. Chem. 43, 1571 (1971).

    Article  Google Scholar 

  60. P. G. Zambonin, V. L. Cardetta, and G. Sio orile, J. Electroanal. Chem. 28, 237 (1970).

    Article  Google Scholar 

  61. E. Desimoni, F. Paniccia, L. Sabbatini, and P. G. Zambonin, J. Appt. Electrochem. 6, 445 (1976).

    Article  Google Scholar 

  62. E. Desimoni, F. Palmisano, and P. G. Zambonin, J. Electroanal. Chem. 84, 323 (1977).

    Article  Google Scholar 

  63. E. Desimoni, F. Paniccia, and P. G. Zambonin, J. Chem. Soc. Faraday Trans. 169, 2014 (1973).

    Google Scholar 

  64. E. Desimoni, F. Paniccia, and P. G. Zambonin, J. Phys. Chem. 81, 1985 (1977).

    Article  Google Scholar 

  65. A. K. Turner, private communication.

    Google Scholar 

  66. R. N. Kust and J. D. Burke, Inorg. Nucl. Chem. Lett. 6, 333 (1970).

    Article  Google Scholar 

  67. A. F. J. Goeting and J. A. A. Ketelaar, Electrochim. Acta 19, 267 (1974).

    Article  Google Scholar 

  68. J. Jordan, W. B. McCarty, and P. G. Zambonin in Molten Salts, Characterization and Analysis, Ed. G. Mamantov, Marcel Dekker, New York (1969).

    Google Scholar 

  69. J. Jordan, J. Electroanal. Chem. 29, 127 (1971).

    Article  Google Scholar 

  70. A. Espinola, Ph.D. thesis, Pennsylvania State University (1974).

    Google Scholar 

  71. A. Espinola and J. Jordan, Proceedings A.C.S. Meeting, San Francisco (August 1976).

    Google Scholar 

  72. D. C. Walker, Q. Rev. 21, 79 (1967).

    Google Scholar 

  73. E. J. Hart and M. Ambar, The Hydrated Electron, Wiley-Interscience, New York (1970).

    Google Scholar 

  74. C. A. Angell and C. T. Moynihan, in Molten Salts: Characterization and Analysis, Ed. G. Mamantov, Marcel Dekker, New York (1969).

    Google Scholar 

  75. H. S. Swofford, Ph.D. thesis, Illinois University, Urbana (1972).

    Google Scholar 

  76. N. Hittorf, Poggendorfs Ann. Phys. 72, 481 (1847).

    Article  ADS  Google Scholar 

  77. H. E. Bartlett and K. E. Johnson, Can. J. Chem. 44, 2119 (1966).

    Article  Google Scholar 

  78. H. E. Bartlett and K. E. Johnson, J. Electrochem. Soc. 114, 64 (1967).

    Article  Google Scholar 

  79. D. G. Lovering, R. M. Oblath, and A. K. Turner, J. Chem. Soc. Chem. Commun., 673 (1976).

    Google Scholar 

  80. G. J. Hills and K. E. Johnson, Proceedings of the 2nd International Conference on Polarography, Cambridge, England, 1959, Pergamon, London (1961). p. 974.

    Google Scholar 

  81. D. H. Kerridge and J. D. Burke, J. Inorg. Nucl. Chem. 38, 1307 (1976).

    Article  Google Scholar 

  82. R. Pineaux, C. R. Acad. Soc. Paris Ser. C. 267, 1449 (1968).

    Google Scholar 

  83. R. Pineaux, C. R. Acad. Sci. Paris Ser. C. 268, 788 (1969).

    Google Scholar 

  84. V. Sh. Palanker, A. M. Skundin, and V. S. Bagotskii, Elektrokhimiya 2, 640 (1966).

    Google Scholar 

  85. J. E. B. Randles and W. White, Z. Electrochemie 59, 666 (1955).

    Google Scholar 

  86. G. J. Hills and P. D. Power, Trans. Faraday Soc. 64, 1629 (1968).

    Article  Google Scholar 

  87. H. A. Laitinen, W. S. Ferguson, and R. A. Osteryoung, J. Electrochem. Soc. 104, 516 (1957).

    Article  Google Scholar 

  88. R. Combes, J. Vedel, and B. Tremillon, C. R. Acad. Sci. Ser. C. 273, 1740 (1971);

    Google Scholar 

  89. R. Combes, J. Vedel, and B. Tremillon, Electrochim. Acta 20, 191 (1975);

    Article  Google Scholar 

  90. R. Lysy and R. Combes, J. Electroanal. Chem. 83, 287 (1977).

    Article  Google Scholar 

  91. R. Combes, J. Vedel, and B. Tremillon, C. R. Acad. Sci. Ser. C. 275, 199 (1972).

    Google Scholar 

  92. J. Goret and B. Tremillon, Bull. Soc. Chim. France, 67 (1966).

    Google Scholar 

  93. J. Goret and B. Tremillon, Electrochim. Acta 12, 1065 (1967).

    Article  Google Scholar 

  94. H. J. Kruger, A. Rahmel, and W. Schwenk, Electrochim. Acta 13, 625 (1968).

    Article  Google Scholar 

  95. G. G. Bombi, S. Zecchin, and G. Schiavon, J. Electroanal. Chem. 50, 261 (1974).

    Article  Google Scholar 

  96. J. Goret and B. Tremillon, Bull. Soc. Chim. France, 2872 (1966).

    Google Scholar 

  97. P. Claes, paper presented at EUCHEM Molten Salt Meeting, Lysekil, Sweden (June 1978).

    Google Scholar 

  98. R. Marassi, V. Bartocci, and F. Pucciarelli, Talanta 19, 203 (1972).

    Article  Google Scholar 

  99. R. Marassi, V. Bartocci, F. Pucciarelli. and P. Cescon, J. Electroanal. Chem. 47, 509 (1973).

    Article  Google Scholar 

  100. J. Dandoy and L. Gierst, J. Electroanal. Chem. 2, 116 (1961).

    Google Scholar 

  101. D. G.Lovering, Collect. Czech. Chem. Commun. 37, 3697 (1972).

    Article  Google Scholar 

  102. D. G. Lovering and R. M. Oblath, J. Electrochern. Soc. 127, 1997 (1980).

    Article  Google Scholar 

  103. D. G. Lovering, J. Electroanal. Chem. 50, 91 (1974).

    Article  Google Scholar 

  104. R. M. Oblath, Ph.D. thesis, CNAA (1978).

    Google Scholar 

  105. D. G. Lovering and R. M. Oblath, in preparation.

    Google Scholar 

  106. D. G. Lovering, private communication to D. Inman (1977).

    Google Scholar 

  107. D. Inman and J. Braunstein, Chem. Commun. 148 (1966).

    Google Scholar 

  108. I. Uchida and H. A. Laitinen, J. Electrochem. Soc. 123, 829 (1976).

    Article  Google Scholar 

  109. H. A. Laitinen, Y. Yamamura, and I. Uchida, J. Electrochem. Soc. 125, 1450 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lovering, D.G., Oblath, R.M. (1981). Water in Molten Salts: Industrial and Electrochemical Consequences. In: Inman, D., Lovering, D.G. (eds) Ionic Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0920-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0920-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0922-3

  • Online ISBN: 978-1-4757-0920-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics