Skip to main content

Molten Salts and Electrolyte Solutions

Some Aspects of Their Transport Properties with Respect to a Common Theory of Liquids

  • Chapter
Ionic Liquids

Abstract

In 1957 Fuoss and Onsager wrote the following in a fundamental paper about the conductance of unassociated electrolytes:

The problem of concentrated solutions cannot, in our opinion, be solved by any extension of the present theory (of liquids), which is based on a smoothed ionic distribution. The approach must start by an adequate theory for fused salts, which must then be followed by the theoretical treatment of the effect on the radial distribution function of adding uncharged (solvent) molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Fuoss and L. Onsager, J. Phys. Chem. 61, 668 (1957).

    Article  Google Scholar 

  2. A. Klemm, “Transport Properties of Molten Salts,” in Molten Salt Chemistry. Ed. M. Blander, Interscience, New York (1964).

    Google Scholar 

  3. B. R. Sundheim, “Transport Properties of Liquid Electrolytes,” in Fused Salts, Ed. B. R. Sundheim, McGraw-Hill, New York (1964).

    Google Scholar 

  4. G. J. Janz and R. D. Reeves, “ Molten Salt Electrolytes-Transport Properties,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, Ed. Ch. W. Tobias, Interscience, New York (1967).

    Google Scholar 

  5. G. J. Janz, Molten Salts Handbook, Academic, New York (1967).

    Google Scholar 

  6. J. W. Tomlinson. “Transport Properties of Molten Salts,” Rev. Pure Appl. Chem. 18, 187 (1968).

    Google Scholar 

  7. C. T. Moynihan, “Mass Transport in Fused Salts,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).

    Google Scholar 

  8. J. L. Copeland, Transport Properties of Ionic Liquids, Gordon and Breach, New York (1974).

    Google Scholar 

  9. H. Bloom and I. K. Snook, “Models for Molten Salts,” in Modern Aspects of Electrochemistry, Vol. 9, Eds. B. E. Conway and J. O’M. Bockris, Plenum, New York (1974).

    Google Scholar 

  10. J. Richter, Electrochim. Acta 22, 1035 (1977).

    Article  Google Scholar 

  11. J. Newman, “Transport Processes in Electrolytic Solutions,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, Ed. Ch. W. Tobias, Interscience, New York (1967).

    Google Scholar 

  12. H. Falkenhagen, W. Ebeling, and W. D. Kraeft, “Mass Transport Properties of Ionized Dilute Electrolytes,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).

    Google Scholar 

  13. D. G. Miller, Faraday Discuss. Chem. Soc. 64, 295 (1977).

    Article  Google Scholar 

  14. J. Braunstein, “Statistical Thermodynamics of Molten Salts and Concentrated Aqueous Electrolytes,” in Ionic Interactions, Vol. I, Ed. S. Petrucci, Academic, New York (1971).

    Google Scholar 

  15. J. Braunstein, Inorg. Chim. Acta Rev. 2, 19 (1968).

    Google Scholar 

  16. H. Falkenhagen, Theorie der Elektrolyte, Hirzel, Leipzig (1971).

    Google Scholar 

  17. R. Haase, Angew. Chem. 77, 517 (1965).

    Article  Google Scholar 

  18. C. A. Angell, J. Phys. Chem. 68, 218, 1917 (1964); 69, 2137 (1965); 70, 2793 (1966); 81, 232, 238 (1977).

    Google Scholar 

  19. J. Braunstein, J. Phys. Chem. 71, 3402 (1967).

    Article  Google Scholar 

  20. L. V. Woodcock, “ Molecular Dynamics Calculations on Molten Ionic Salts,” in Advances in Molten Salt Chemistry, Vol. 3, Eds. J. Braunstein, G. Mamantov, and G. P. Smith, Plenum, New York (1975).

    Google Scholar 

  21. R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, Massachusetts (1969).

    Google Scholar 

  22. J. Richter and S. Sehm, Z. Naturforsch. 27a, 141 (1972).

    ADS  Google Scholar 

  23. D. A. Maclnnes and A. S. Brown, Chem. Rev. 18, 335 (1936).

    Article  Google Scholar 

  24. H. Pelzer, Thesis, RWTH Aachen, 1961.

    Google Scholar 

  25. G. J. Janz, U. Krebs, H. F. Siegenthaler, and R. P. T. Tomkins, J. Phys. Chem. Ref Data 1 (3), 581–746 (1972). (Molten Salts, Vol. 3, Nitrates, Nitrites, and Mixtures).

    Google Scholar 

  26. I. D. McKenzie and R. M. Fuoss, J. Phys. Chem. 73, 1501 (1969).

    Article  Google Scholar 

  27. A. N. Campell and K. P. Singh, Can. J. Chem. 37, 1959 (1959).

    Article  Google Scholar 

  28. A. N. Campell and R. J. Friesen, Can. J. Chem. 37, 1288 (1959).

    Article  Google Scholar 

  29. T. Shedlovsky, J. Am. Chem. Soc. 54, 1411 (1932).

    Google Scholar 

  30. G. D. Parfitt and A. L. Smith, Trans. Faraday Soc. 59, 257 (1963).

    Article  Google Scholar 

  31. C. H. Orr and H. E. Wirth, J. Phys. Chem. 63, 1147 (1959).

    Article  Google Scholar 

  32. A. N. Campell and E. M. Kartzmark, Can. J. Chem. 28B, 43 (1950).

    Google Scholar 

  33. J. Richter and E. Amkreutz, Z. Naturforsch. 27a, 280 (1972).

    ADS  Google Scholar 

  34. R. Haase, G. Lehnert, and H. J. Jansen, Z. Phys. Chem. (Frankfurt am Main) 42, 32 (1964).

    Article  Google Scholar 

  35. D. A. Maclnnes and I. A. Cowperthwaite, Chem. Rev. 11, 210 (1932).

    Google Scholar 

  36. H. Strehlow and H.-M. Kroetz, Z. Electrochem. Ber. Bunsenges. Physik. Chem. 62, 373 (1958).

    Google Scholar 

  37. N. Roessler and H. Schneider, Ber. Bunsenges. Phys. Cheni. 74, 1225 (1970).

    Google Scholar 

  38. D. Andréasson, A. Behn, and C.-A. Sjöblom, Z. Naturforsch. 25a, 700 (1970).

    ADS  Google Scholar 

  39. J. Richter, J. Chem. Eng. Data 18, 400 (1973); Z. Naturforsch. 28a, 492 (1973).

    ADS  Google Scholar 

  40. J. G. Albright and D. G. Miller, J. Phys. Chem. 76, 1853 (1972).

    Article  Google Scholar 

  41. D. G. Miller and M. J. Pikal, J. Solution Chem. 1,111 (1972).

    Google Scholar 

  42. 42. L. Onsager, Phys. Rec.37, 405 (1931); 38, 2265 (1931); Ann. _N.Y. Acad. Sci.46 241 (1945).

    Google Scholar 

  43. R. Haase and J. Richter, Z. Naturforsch 22a, 1761 (1967).

    ADS  Google Scholar 

  44. A. Klemm, Z. Naturforsch. 8a, 397 (1953); 17a, 805 (1962).

    Google Scholar 

  45. J. Richter, Ber. Bunsenges. Physik. Chem. 78, 972 (1974).

    Google Scholar 

  46. R. W. Laity, J. Chem. Phys. 30, 682 (1959).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richter, J. (1981). Molten Salts and Electrolyte Solutions. In: Inman, D., Lovering, D.G. (eds) Ionic Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0920-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0920-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0922-3

  • Online ISBN: 978-1-4757-0920-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics