About a decade ago a new kind of symmetry principle appeared in physics, namely supersymmetry. The novel feature of this symmetry is that it operates between bosons and fermions which have different space-time (or spin and statistics) properties. The generators of supersymmetry transformations form a Lie superalgebra whose even subalgebra is an ordinary Lie algebra and the odd generators, which mix bosons and fermions, close under anti-commutation to the even part.


Group Element Fundamental Representation Adjoint Representation Dynkin Diagram Young Tableau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Neveu and J.H. Schwarz, Nucl. Phys. B31, 86 (1971)ADSCrossRefGoogle Scholar
  2. 1a.
    P. Ramond, Phys. Rev. D3, 2415 (1971).MathSciNetADSGoogle Scholar
  3. 2.
    J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974)MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    For a review see P. Fayet and S. Ferrara, Phys. Rep. 32 69 (1977)MathSciNetCrossRefGoogle Scholar
  5. 3a.
    P. Van Nieuwenhuzien Phys. Rep. C68, 189 (1981)MathSciNetADSCrossRefGoogle Scholar
  6. 4.
    A.B. Balantekin, I. Bars, F. Iachello, Phys. Rev. Lett. 47, 19 (1981)ADSCrossRefGoogle Scholar
  7. 4a.
    A.B. Balantekin, I. Bars, F. Iachello, Nucl. Phys. A370, 284 (1981); Yale preprint YTP-82–11 to be published in Phys. Rev. Lett.MathSciNetCrossRefGoogle Scholar
  8. 5.
    A. Salam and J. Strathdee, Nucl. Phys. B79, 477 (1974)MathSciNetADSCrossRefGoogle Scholar
  9. 6.
    T. Banks, A. Schwimmer, S. Yankielowicz, Phys. Lett. B96, 67 (1980)MathSciNetGoogle Scholar
  10. 6a.
    I. Bars and S. Yankielowicz B101, 159 (1981)Google Scholar
  11. 6b.
    I. Bars, Phys. Lett. B106, 105 (1981)Google Scholar
  12. 6c.
    I. Bars, Phys. Let. B114, 118 (1982)MathSciNetADSCrossRefGoogle Scholar
  13. 6d.
    I. Bars, Nucl. Phys. B280 (1982); Yale preprint YTP 82–84, in Proc. Of Rencontreide Moriond 1982;Google Scholar
  14. 6e.
    A. Schwimmer, Rutgers preprint RU-81–49.Google Scholar
  15. 7.
    I. Bars, to be published.Google Scholar
  16. 8.
    Y. Ne’eman, Phys. Lett. 81B, 190 (1979) and Tel Aviv preprint TAUP 134–81.MathSciNetGoogle Scholar
  17. 9.
    C. Becchi, A. Rouet, A. Stora, Commun. Math. Phys. 42, 127 (1975)MathSciNetADSCrossRefGoogle Scholar
  18. 9a.
    J. Thierry-Mieg and Y. Ne’eman, Ann. Phys. N.Y. 123, 247 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 9b.
    R. Delbourgo and P. Jarvis, J. Phys. A. Math, Gen. 15, 611 (1982).MathSciNetADSCrossRefGoogle Scholar
  20. 10.
    P. Fayet, Phys. Lett. 69B, 489 (1977)Google Scholar
  21. 10a.
    P. Fayet, Phys. Lett. 70B, 461 (1977);Google Scholar
  22. 10b.
    S. Dimopoulos S. Raby, Nucl. Phys. B192, 353 (1981);ADSCrossRefGoogle Scholar
  23. 10c.
    M. Dine, W. Fishler, M. Srednicki Nucl. Phys. B189, 575 (1981);ADSCrossRefGoogle Scholar
  24. 10d.
    S. Dimopoulos, H. Georgi, Nucl. Phys. B193, 150 (1981);ADSCrossRefGoogle Scholar
  25. 10e.
    S. Weinberg, Phys. Rev. D26, 287 (1982).ADSCrossRefGoogle Scholar
  26. 11.
    I. Bars, G. Veneziano and S. Yankielowicz, to be published.Google Scholar
  27. 12.
    S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976)MathSciNetGoogle Scholar
  28. 12a.
    D. Z. Freedman, P. Van Nieuwenhuzien, S. Ferrara, Phys. Rev. D13, 3214 (1976).MathSciNetADSGoogle Scholar
  29. 13.
    G. ’tHooft, in “Recent Developments in Gauge Theories”, eds. G. ’Hooft et al. (Plenum, New York, 1980).Google Scholar
  30. 14.
    A.B. Balantekin, J. Math. Phys. 22, 1149 (1981) 22, 1810 (1981); 23, 1239 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 15.
    A.B. Balanteksin, J. Math. Phys. 23, 486 (1982).MathSciNetADSCrossRefGoogle Scholar
  32. 16.
    I. Bars, B. Morel, H. Ruegg, CERN preprint TH 3333 (1982) to be published in J. Math Phys.Google Scholar
  33. 17.
    I. Bars and M. Gunarydin, CERN preprint TH 3350 (1982) to be published in Comm. Math. Phys.Google Scholar
  34. 18.
    V.G. Kac, in Differential Geometrical Methods in Math. Phys. ed. K. Bleuler, H.R. Petry, A. Reetz (Springer, Berlin 1978).Google Scholar
  35. 19.
    Y. Ne’eman, S. Sternberg, Proc. Natl. Acad. Sci. USA 77, 3127 (1980)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 19a.
    P.H. Dondi and P. Jarvis, Z Phys. C4, 201 (1980)MathSciNetGoogle Scholar
  37. 19b.
    P.H. Dondi and P. Jarvis, J. Math. Phys. A14 547 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 19c.
    M. Scheunert, W. Nahm, V. Rittenberg, J. Math. Phys. 18, 155 (1977)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 19d.
    M. Marcu, J. Math. Phys. 21, ( 1980);Google Scholar
  40. 19e.
    J. Thierry-Mieg and B. Morel, Harvard preprint HUTMP 80/8100.Google Scholar
  41. 20.
    H. Weyl, Classical Groups, (Princeton, U.P. Princeton, 1946)zbMATHGoogle Scholar
  42. 21.
    A.M. Perelemov and V.S. Popov, Sov. J. Nucl. Phys. 3, 676 (1966) and 5, 489 (1967).Google Scholar
  43. 22.
    See e.g. W.G. Mckay and J. Patera, Tables of Dimensions, Indices and Branching Rules for Representations of Simple Lie Algebras (Marcel Dekker, N.Y. 1981)zbMATHGoogle Scholar
  44. 22a.
    B.G. Wybourne, Symmetry Principles and Atomic Spectroscopy E.B. Dynkin, Am. Math Soc. Tr., Ser. 2, 6, 353 (1957)Google Scholar
  45. 22b.
    H. Freudental, Indag. Math. 16, 490 (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • I. Bars
    • 1
  1. 1.J. W. Gibbs Laboratory, Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations