Advertisement

Yang-Mills Theories with Global and Local Supersymmetry — Higgs and Superhiggs Effect in Unified Field Theories

  • S. Ferrara

Abstract

The phenomenological success of the Glashow-Weinberg-Salam1 model in describing electromagnetic and weak interactions in a unified fashion and in embedding the Fermi theory of weak interactions in a renormalizable field theory has dramatically reproposed unified field theories as the correct theoretical framework for describing all elementary particle interactions.

Keywords

Gauge Group Irreducible Representation Supersymmetry Breaking Vector Multiplet Chiral Multiplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Glashow, Nucl. Phys. 22 (1961) 579;CrossRefGoogle Scholar
  2. 1a.
    J.C. Ward and A. Salam, Phys. Lett. 13 (1964) 168;MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 1b.
    S. Weinberg. Phys. Rev. Lett. 19 (1967) 1264.ADSCrossRefGoogle Scholar
  4. A. Salam, “Elementary Particle Theory”, ed. N. Svartholm, Alquimist and Wiksell, Stockholm, 1968, p. 367.Google Scholar
  5. 2.
    For reviews on supersymmetry see for instance: P. Fayet and S. Ferrara, Phys. Rep. 32C (1977) 251;MathSciNetADSCrossRefGoogle Scholar
  6. 2a.
    A. Salam and J. Strathdee, Fortsch. Phys. 26 (1976) 57.MathSciNetADSCrossRefGoogle Scholar
  7. 3.
    For a review see for instance: P. van Nieuwenhuizen, Phys. Rep. 68 (1981) 184.Google Scholar
  8. 4.
    R. Haag, J.T. Lopuszanski and M. Sohnius, Nucl. Phys. B88 (1975) 257.MathSciNetADSCrossRefGoogle Scholar
  9. 5.
    S. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251;ADSzbMATHCrossRefGoogle Scholar
  10. 5a.
    L. O’Raifeartaigh, Phys. Rev. Lett. 14 (1965) 575MathSciNetADSCrossRefGoogle Scholar
  11. 5b.
    L. O’Raifeartaigh Phys. Rev. B139 (1965) 1052.MathSciNetADSCrossRefGoogle Scholar
  12. 6.
    P. Fayet, Nucl. Phys. B113 (1976) 135.MathSciNetADSCrossRefGoogle Scholar
  13. 7.
    F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 253ADSCrossRefGoogle Scholar
  14. 7a.
    L. Brink, J.H. Schwarz and J. Scherk, Nucl. Phys. B121 (1977) 11.MathSciNetGoogle Scholar
  15. 8.
    S. Ferrara and B. Zumino, unpublished; M. Sohnius and P. West, Phys. Lett. 100B (1981) 245;MathSciNetGoogle Scholar
  16. 8a.
    K.S. Stelle, LPTENS preprint 81/24 (1981).Google Scholar
  17. 9.
    L. Maiani in Proceedings of the Summer School of Gif-sur-Yvette (1979), p. 3;Google Scholar
  18. 9a.
    E. Witten, Nucl. Phys. B188 (1981) 313.CrossRefGoogle Scholar
  19. 9b.
    S. Dimopoulos and S. Raby, Nucl. Phys. B192 (1981) 353.ADSCrossRefGoogle Scholar
  20. 10.
    E. Gildener and S. Weinberg, Phys. Rev. D13 (1976) 3333;ADSGoogle Scholar
  21. 10a.
    S. Weinberg, Phys. Lett. 82B (1979) 387.MathSciNetGoogle Scholar
  22. 11.
    G. Hooft, Cargese Lectures 1979, to be published; M. Veltman, Acta Physica Polonica, to be published;Google Scholar
  23. 12.
    Y.A. Gol’fand and E.P. Likhtam, JETP Lett. 13 (1971) 323;ADSGoogle Scholar
  24. 12a.
    D.V. Volkov and V.P. Akulov, Phys. Lett. 46B (1973) 109;CrossRefGoogle Scholar
  25. 12b.
    J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39.MathSciNetADSCrossRefGoogle Scholar
  26. 13.
    S. Ferrara, B. Zumino and J. Wess, Phys. Lett. 51B (1974) 239.Google Scholar
  27. 14.
    A. Salam and J. Strathdee, Nucl. Phys. B80 (1974) 499MathSciNetADSCrossRefGoogle Scholar
  28. 14a.
    A. Salam and J. Strathdee, Nucl. Phys. B84 (1975) 127; see alsoMathSciNetADSCrossRefGoogle Scholar
  29. 14b.
    S. Ferrara, CERN preprint TH.2957 (1981), Plenary talk given at the 9th International Conference on General Relativity and Gravitation, Jena (1980), to be published.Google Scholar
  30. 15.
    See the third Ref. in (12) .Google Scholar
  31. 16.
    J. Wess and B. Zumino, Nucl. Phys. B78 (1974) 1.MathSciNetADSCrossRefGoogle Scholar
  32. 17.
    A. Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477MathSciNetADSCrossRefGoogle Scholar
  33. 18.
    S. Ferrara and B. Zumino, Nucl. Phys. B79 (1974) 413;ADSCrossRefGoogle Scholar
  34. 18a.
    A. Salam and J. Strathdee, Phys. Lett. 51B (1974) 353.MathSciNetGoogle Scholar
  35. 19.
    L. O’Raifeartaigh, Nucl. Phys. 56B (1975) 413Google Scholar
  36. 19a.
    L. O’Raifeartaigh, Nucl. Phys. B89 (1975) 41 - B96 (1975) 331.Google Scholar
  37. 20.
    S. Ferrara, L. Girardello and F. Palumbo, Phys. Rev. D20 (1979) 403.ADSCrossRefGoogle Scholar
  38. 21.
    J. Wess and B. Zumino, Phys. Lett 49B (1974) 52;Google Scholar
  39. 21a.
    J. Iliopoulos and B. Zumino, Nucl. Phys. B76 (1974) 310;ADSCrossRefGoogle Scholar
  40. 21b.
    S. Ferrara, J. Iliopoulos and B. Zumino, Nucl. Phys. B77 (1974) 413;ADSCrossRefGoogle Scholar
  41. 21c.
    S. Ferrara and O. Piguet, Nucl. Phys. B93 (1975) 261.ADSCrossRefGoogle Scholar
  42. 22.
    W. Fishler, H. Nilles, J. Polchinski, S. Raby and L. Susskind, Phys. Rev. Lett. 47 (1981) 757.ADSCrossRefGoogle Scholar
  43. 23.
    P. Fayet in “Unification of the Fundamental Particle Interactions”, ed. by S. Ferrara, J. Ellis and P. van Nieuwenhuizen (Plenum Press, N. Y., 1980), p. 587.CrossRefGoogle Scholar
  44. 24.
    S. Weinberg, Harvard preprint HUTP 81/A047 (1981).Google Scholar
  45. 25.
    R. Barbieri, S. Ferrara and D.V. Nanopoulos, CERN preprint TH.3226 (1982).Google Scholar
  46. 26.
    E. Witten, Phys. Lett 105B (1981) 267MathSciNetGoogle Scholar
  47. 27.
    S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150.ADSCrossRefGoogle Scholar
  48. 28.
    L. Girardello and M.T. Grisaru, Brandeis University preprint (1981).Google Scholar
  49. 29.
    D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13 (1976) 3214;MathSciNetADSGoogle Scholar
  50. 29a.
    S. Deser and B. Zumino Phys. Lett. 62B (1976) 335. For a recent review, seeMathSciNetGoogle Scholar
  51. 29b.
    P. van Nieuwenhuizen, Phys. Rep. 68 no. 4 (1981) 189.MathSciNetADSCrossRefGoogle Scholar
  52. 30.
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, CERN preprint TH.3312 (1982) and CERN preprint TH.3348 (1982).Google Scholar
  53. 31.
    S. Ferrara, J. Scherck and P. van Nieuwenhuizen, Phys. Rev. Lett. 37 (1976) 1976;Google Scholar
  54. 31a.
    S. Ferrara, L. Gliozzi, J. Scherk and P. van Nieuwenhuizen, Nucl. Phys. B117 (1976) 333;ADSCrossRefGoogle Scholar
  55. 32.
    S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 76B (1978) 404MathSciNetGoogle Scholar
  56. K.S. Stelle and P.C. West, Phys. Lett. 77B (1978) 376.Google Scholar
  57. 33.
    D.V. Volkov and V.A. Soroka, JETP Lett. 18 (1973) 312;ADSGoogle Scholar
  58. 33a.
    S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.ADSCrossRefGoogle Scholar
  59. 34.
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Phys. Lett. 79B (1978) 231Google Scholar
  60. 34a.
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Nucl. Phys. B147 (1979) 105.ADSCrossRefGoogle Scholar
  61. 35.
    J. Ellis and D.V. Nanopoulos, CERN preprint TH.3319 (1982)Google Scholar
  62. 36.
    R. Barbieri, S. Ferrara, D.V. Nanopoulos and K.S. Stelle, CERN preprint TH. 3243 (1982), to appear in Phys. Lett. B.Google Scholar
  63. 37.
    K.S. Stelle and P.C. West, Nucl. Phys. B145 (1978) 175ADSCrossRefGoogle Scholar
  64. 37a.
    M. Sohnius and P.C. West, Phys. Lett. 105B (1981) 353.Google Scholar
  65. 38.
    H. Pagels and J. Primack, Phys. Rev. Lett. 48 (1982) 223;ADSCrossRefGoogle Scholar
  66. 38a.
    S. Weinberg, Phys. Rev. Lett. 48 (1982) 1303.ADSCrossRefGoogle Scholar
  67. 39.
    For an attempt to use local supersymmetry in supercolour schemes in connection with the hierarchy problem, see: H.P. Nilles, CERN preprint TH.3294 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • S. Ferrara
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations