Skip to main content

Theoretical Description of Blackbody Models

  • Chapter
Infrared Radiation

Part of the book series: Optical Physics and Engineering ((OPEG))

Abstract

In laboratory and industrial practice, a source of radiation is often required which conforms very closely to a blackbody and can be controlled in temperature. Such blackbody models, whose spectral energy distribution follows the Planck law quite accurately, are widely applied as reference sources for radiometers and spectroradiometers, as standard sources for calibrating special infrared equipment of various types, and for determining the basic parameters of radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. N. S. Shestov, Sources of Radiant Energy [in Russian], Part 1 ( Moscow and Leningrad, Power Engng. Press, 1954 ).

    Google Scholar 

  2. H. Buckley, “On the radiation from the inside of a circular cylinder,” Phil. Mag., (7), 4: 753–762 (1927).

    Google Scholar 

  3. E. Eckert, Arch. Wärmew. DampfkWes., 16: 135–138 (1935).

    Google Scholar 

  4. J. C. De Vos, “Evaluation of the quality of a blackbody,” Physica, 20: 669–689 (1954).

    Article  ADS  Google Scholar 

  5. E. M. Sparrow and L. U. Albers, “Apparent emissivity and heat transfer in a long cylindrical tube,” J. Heat Transfer, 82: 253–255 (1960).

    Article  Google Scholar 

  6. H. Buckley, “On the radiation from the inside of a circular cylinder III,” Phil. Mag., (7), 17: 576–581 (1934).

    MATH  Google Scholar 

  7. E. M. Sparrow, L. U. Albers, and E. R. G. Eckert, “Thermal radiation characteristics of cylindrical enclosures,” J. Heat Transfer, 84: 73–81 (1962).

    Article  Google Scholar 

  8. A. M. Brounshtein, Trudy glay. geofiz. Obs. Voeikova, 100: 93–104 (1960).

    Google Scholar 

  9. R. C. Birkebak and J. P. Hartnett, Trans. Am. Soc. mech. Engrs., 80: 373–378 (1958).

    Google Scholar 

  10. E. R. G. Eckert, J. P. Hartnett, and T. F. Irvine, Jr., “Measurement of total emissivity of porous materials in use for transpiration cooling,” Jet Propul., 26: 280–282 (1956).

    Google Scholar 

  11. S. I. Shevtsov, Trudykrasnodar. Inst. pishch. Prom., (1951), No. 10, 17–21.

    Google Scholar 

  12. S. Silverman, “The emissivity of globar,” J. opt. Soc. Am., 38: 989 (1948).

    Google Scholar 

  13. K. S. Vul’fson and I. Sh. Libin, “A slit source for spectrophotometric measurements” [in Russian], Zh. tekh. Fiz., 22: 525–529 (1952).

    Google Scholar 

  14. S. I. Levikov, Trudy gos. opt. Inst., 14: 128 (1941).

    Google Scholar 

  15. A. G. Blokh, op. cit. (Chap. I, ref. 5).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bramson, M.A. (1968). Theoretical Description of Blackbody Models. In: Infrared Radiation. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0911-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0911-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0913-1

  • Online ISBN: 978-1-4757-0911-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics