Nonblackbody Radiation

  • Mikaél’ A. Bramson
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

None of the natural or artificial objects that we may encounter is a perfectly black body. For example, “black” paper reflects 4.5% of the energy striking it, “black” cloth slightly over 1%, and “black” velvet 0.4%. A fundamental property of a perfectly black body is that its shape, material, and surface characteristics have no bearing whatever on its radiating and absorbing characteristics.

Keywords

Ceramic Coating Spectral Emissivity Blackbody Radiation Radiant Emittance Radiative Heat Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    A. G. Blokh, op. cit. (Chap. I, ref. 5).Google Scholar
  2. 2.
    E. Eckert, “Messung der Reflexion von Wärmestrahlen an technischen Oberflächen,” Forsch. Geb. IngWes., 7: 265–270 (1936).CrossRefGoogle Scholar
  3. 3.
    P. A. Apanasevich et al., op. cit. (Chap. II, ref. 4).Google Scholar
  4. 4.
    W. E. Forsythe and E. Q. Adams, “Radiating characteristics of tungsten and tungsten lamps,” J. opt. Soc. Am., 35: 108–113 (1945).ADSCrossRefGoogle Scholar
  5. 5.
    A. P. Ivanov, op. cit. (Chap. I, ref. 4).Google Scholar
  6. 6.
    M. A. Bramson, I. L. Zel’manovich, and G. I. Kuleshova, “The emissivity of water in the infrared spectral region (thermal physics of the sea)” [in Russian], Trudy glay. geofiz. Obs. Voeikova (Research on Radiative Processes), 152: 31–67 (1964).Google Scholar
  7. 7.
    L. Z. Kriksunov, A Handbook of Infrared Technology [in Russian] (Riga, 1959 ).Google Scholar
  8. 8.
    J. D. Hardy, “Radiating power of human skin in infrared,” Am. J. Physiol., 127: 454–462 (1939).Google Scholar
  9. 9.
    E. Hagen and H. Rubens, “Das Reflexionsvermögen einiger Metalle für ultraviolette und ultrarote Strahlen,” Annln Phys., (4), 8: 1–21 (1902).ADSCrossRefGoogle Scholar
  10. 10.
    E. Lax and M. Pirani, “Temperaturstrahlung fester Körper,” Handb. Phys., 21 (Chapt. 4): 190–272 (1929).Google Scholar
  11. 11.
    O. Lummer and E. Pringsheim, “Radiation of blackbodies and platinum” [in German], Verh. dt. phys. Ges., 1: 215–230 (1899).Google Scholar
  12. 12.
    F. Cennamo, “Sull’emissione spettrale del nichel a varie temperature,” Nuovo Cim., (8), 16: 253–260 (1939).CrossRefGoogle Scholar
  13. 13.
    W. H. J. Childs, Physical Constants, 5th edn. (London, Methuen; New York, Wiley; 1958 ); 79 pp.; Russian translation ( Moscow, Phys. Math. Press, 1961 ).Google Scholar
  14. 14.
    M. A. Bramson, tabular section of this volume (cf. Chap. I, ref. 8).Google Scholar
  15. 15.
    E. Hagen and H. Rubens, “Über Beziehungen des Reflexions-und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen,” Annln. Phys., (4), 11: 873–901 (1903).CrossRefGoogle Scholar
  16. 16.
    H. Rubens and E. Hagen, “Über die Änderung des Emissionsvermögens der Metalle mit der Temperatur im kurzwelligen Teil des Ultrarot,” Phys. Z., 11: 139–141 (1910).Google Scholar
  17. 17.
    W. Weniger, “Infra-red absorption spectra,” Phys. Rev., (1), 31: 388420 (1910).Google Scholar
  18. 18.
    D. Ya. Svet, in Research on Heat-Resistant Alloys [in Russian], Vol. 4 ( USSR Acad. Sci. Press, 1959 ), pp. 323–328.Google Scholar
  19. 19.
    A. M. Samarin and D. Ya. Svet, “The emissivity of liquid metals,” Dokl. Akad. Nauk SSSR, 126(1):78–80 (1959) [Soviet Phys. Dokl., 4:667–669 (1959)].Google Scholar
  20. 20.
    J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica, 20: 690–714 (1954).ADSCrossRefGoogle Scholar
  21. 21.
    R. D. Larrabee, “Spectral emissivity of tungsten,” J. opt. Soc. Am., 49: 619–625 (1959).ADSCrossRefGoogle Scholar
  22. 22.
    S. M. De Corso and R. L. Coit, “Measurement of total emissivities of gas-turbine combustor materials,” Trans. Am. Soc. mech. Engrs., 77: 1189–97 (1955).Google Scholar
  23. 23.
    B. P. Kozyrev and O. E. Vershinin, “Determination of spectral coefficients of diffuse reflection of infrared radiation from blackened surfaces,” Optika Spektrosk., 6:543–549 (1959) [Optics Spectrosc., 6:345–350 (1959)1.Google Scholar
  24. 24.
    J. C. Richmond, First Symposium of Surface Effects on Spacecraft Materials ( Palo Alto, Calif., 1960 ), pp. 92–116.Google Scholar
  25. 25.
    G. D. Gordon, “Measurement of ratio of absorptivity of sunlight to thermal emissivity,” Rev. scient. Instrum., 31: 1204–08 (1960).ADSCrossRefGoogle Scholar
  26. 26.
    J. T. Bevans and J. T. Gier, “Comparison of total emittances with values computed from spectral measurements,” Trans. Am. Soc. mech. Engrs., Vol. 80, No. 7 (1958).Google Scholar
  27. 27.
    T. P. Serebryakova, Yu. B. Paderno, and G. V. Samsonov, “Emission coefficients of some powdered high-melting compounds,” Optika Spektrosk., 8:410–412 (1960) [Optics Spectrosc., 8:212–213 (1960)1.Google Scholar
  28. 28.
    T. Royds, “Das Reflexionsvermögen schwarzer Flächen,” Phys. Z., 11: 316–318 (1910).Google Scholar
  29. 29.
    William E. Forsythe, ed., Measurement of Radiant Energy ( New York, McGraw-Hill, 1937 ), 452 pp.Google Scholar
  30. 30.
    J. C. Johnson and J. R. Terrel, “Transmission cross sections for water spheres illuminated by infrared radiation,” J. opt. Soc. Am., 45: 451–455 (1955).ADSCrossRefGoogle Scholar
  31. 31.
    M. Centano V, “The refractive index of liquid water in the near infrared spectrum,” J. opt. Soc. Am., 31: 244–247 (1941).ADSCrossRefGoogle Scholar
  32. 32.
    K. S. Shifrin, Scattering of Light in a Turbid Medium [in Russian] ( Moscow, Tech. Theor. Press, 1951 ), 288 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Mikaél’ A. Bramson
    • 1
  1. 1.Institute of Mineral FuelsAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations