Search Strategies for Higgs Bosons at High Energy e+e Colliders

  • Patricia R. Burchat
Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


Search strategies for a minimal neutral Higgs boson at e + e colliders with center-of-mass (c.m.) energies in the range 200 GeV to 2 TeV are reviewed. In addition, search stategies for a charged Higgs boson and nonminimal neutral Higgs bosons are discussed for c.m. energies near 1 TeV. With sufficient luminosity, searches for charged or minimal neutral Higgs bosons at e + e colliders are sensitive to Higgs boson masses up to about 80% of the beam energy. However, there is a range of masses near the W ± or Z° mass which can probably only be covered with an e + e collider operating at a c.m. energy of about 300–400 GeV. For a limited range of masses, the nonminimal CP-even and CP-odd neutral Higgs bosons could be detected in e + e collisions.


Higgs Boson Invariant Mass Higgs Boson Mass Standard Model Background Charged Higgs Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, The Higgs Hunter’s Guide,J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Preprint Numbers UCD-89–4, SCIPP-89/13 and BNL-41644 (1988), and references therein.Google Scholar
  2. 2.
    A. Seiden, these proceedings.Google Scholar
  3. 3.
    A. J. Weinstein, proceedings of the XIV International Symposium on Lepton and Photon Interactions, Stanford, California, August 7–12, 1989.Google Scholar
  4. 4.
    Search for Neutral Higgs at LEP 200,J.Boucrot et al., presented by S.L.Wu at the ECFA Workshop - LEP 200, Aachen, Sept. 29 - Oct. 1, 1986; J.Hilgart et al., A. Phys. C35, 347 (1987).Google Scholar
  5. 5.
    C. Ahn et al., SLAC-Report-329, 1988.Google Scholar
  6. 6.
    P. R. Burchat, D. L. Burke and A. Petersen, Phys. Rev. D 38, 2735 (1988); Erratum, ibid. 39, 3515 (1989).Google Scholar
  7. 7.
    Komamiya, Phys. Rev. D 38, 2158 (1988).CrossRefGoogle Scholar
  8. 8.
    J. Alexander et al., SLAC-PUB-4775, to be published in Proceedings of the DPF Summer Study: Snowmass ‘88, High Energy Physics in the 1990’s, Snowmass, Colorado, June 27 - July 15, 1988.Google Scholar
  9. 9.
    F. Richard, in Proceedings of the Workshop on Physics at Future Accelerators, La Thuile (Italy) and Geneva (Switzerland), Jan. 7–13, 1987.Google Scholar
  10. 10.
    J. Gunion, P. Kalyniak, M. Soldate, P. Galison, Phys. Rev. D 34, 101 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    R. Cahn, Nucl. Phys. B 255, 341 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    K. Yokoya, Nucl. Instrum. Methods A251, 1 (1986); P. Chen, SLAC-PUB-4293, 1987.Google Scholar
  13. 13.
    R. B. Palmer, SLAC-PUB 4295 (1987); W. Schnell, Advanced Accelerator Concepts, Madison, WI, AIP Conf. Proc. 156, 12 (1987), and SLAC/AP-61 (1987).Google Scholar
  14. 14.
    T. Sjostrand and M. Bengtsson, Computer Phys. Comm. 43, 367 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    F. Richard, Proceedings of the Workshop on Physics at Future Accelerators,La Thuile, Italy and Geneva, Switzerland, 1987, CERN 87–07; B. Mele, ibid.Google Scholar
  16. 16.
    E. Yehudai, private communication.Google Scholar
  17. 17.
    J.F. Gunion et al.,Phys. Rev. D38, 3444 (1988).ADSGoogle Scholar
  18. 18.
    W. Bartel et al.., Z. Phys., C33, 23 (1986).Google Scholar
  19. 19.
    See, for example, P. Grosse-Wiesmann, SLAC-PUB-4616, presented at the Workshop on Intermediate Mass and Non-Minimal Higgs Bosons, U. of California, Davis, California, Jan. 4–6, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Patricia R. Burchat
    • 1
  1. 1.Santa Cruz Institute for Particle PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations