Triviality and Higgs Mass Bounds: A Status Report

  • M. A. B. Bég
Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


We present a survey of theoretical bounds on the masses of the Higgs boson and the top quark, focussing on the results that stem from triviality. Background material is supplied in the form of a review of the hypercolor/technicolor alternative—with its freedom from triviality—to the canonical methodology; the clumsy theoretical structure of the scenario is underlined and the temptation to wield Ockham’s razor is noted; that the subject is nonetheless of great experimental interest is also emphasized. Included in the extended introductory remarks is a brief exegesis of the subject of triviality; the purpose is to shed light on some aspects that lend themselves to clarification, and thereby eliminate misconceptions that have been the source of much pointless disputation; while this still leaves the bulk of the subject shrouded in darkness, it permits identification of a rich assortment of challenges and opportunities.


Higgs Boson Gauge Group Higgs Mass Canonical Theory Asymptotic Freedom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. 1.
    For an early review, with a voluminous listing of the primary sources, see: M.A.B. Bég and A. Sirlin, Annu. Rev. Nucl. Science 24, 379 (1974). Original contributions in this paper include a proposal to opt for the dynamical alternative to elementary Higgs.Google Scholar
  2. 2.
    M.A.B. Bég and A. Sirlin, Phys. Reps. 88, 1 (1982). This continuation of ref. 1 contains, inter alia, an extensive discussion of the hypercolor/technicolor scheme introduced by S. Weinberg [Phys. Rev. D13, 974 (1976)Google Scholar
  3. L. Susskind [Phys. Rev. D20, 2619 (1979)];Google Scholar
  4. For a dedicated review of technicolor, see: E. Farhi and L. Susskind, Phys. Reps. 74, 277 (1981).ADSCrossRefGoogle Scholar
  5. 3.
    Cf. H Georgi, E.E. Jenkins and E.H. Simmons, Phys. Rev. Lett. 62, 2789 (1989).ADSCrossRefGoogle Scholar
  6. 4.
    For a review and extensive references to the literature, see: D. J. E. Callaway, Phys. Reps. 167, 241 (1988).ADSCrossRefGoogle Scholar
  7. 5.
    M.A.B. Bég, Phys. Lett. B124, 403 (1983); ibid. B129, 113 (1983).Google Scholar
  8. 6.
    T. Appelquist, D. Karabali and L.C.R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986).ADSCrossRefGoogle Scholar
  9. 7.
    E. Farhi and L. Susskind, ref. 2.Google Scholar
  10. 8.
    S.-L. Wu, Phys. Reps. 107, 59 (1984)ADSCrossRefGoogle Scholar
  11. 9.
    M.A.B. Bég, H.D. Politzer and P. Ramond, Phys. Rev. Lett. 43, 1701 (1979).ADSCrossRefGoogle Scholar
  12. 10.
    M.A.B. Bég, in: Particles and the Universe-Proc. of the Int. Symp. held at Thessaloniki, Greece, June 24–29, 1985Google Scholar
  13. G. Lazarides and Q. Shafi eds. ( North Holland, New York, 1986 ) p. 61.Google Scholar
  14. 11.
    C.G. Callan Jr., Phys. Rev. D2, 1541 (1970); K. Symanzik, Comm. Math. Phys. 18, 227 (1970).CrossRefGoogle Scholar
  15. 12.
    See, for example, N.V. Butenin, “Elements of the Theory of Nonlinear Oscillations,” ( Blaisdell, New York, 1965 ).zbMATHGoogle Scholar
  16. 13.
    I am indebted to John Lowenstein and Mitchell Feigenbaum for enjoyable discussions on this topic.Google Scholar
  17. 14.
    L.D. Landau, in: “Niels Bohr and the Development of Physics,” ( McGraw Hill, New York, 1955 ).Google Scholar
  18. 15.
    M. Gell-Mann and F.E. Low, Phys. Rev. 95, 1300 (1954).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 16.
    W. Thirring, “Principles of Quantum Electrodynamics,” ( Academic Press, New York, 1958 ). p. 199.Google Scholar
  20. 17.
    See, for example, D.G. Caldi, Comments Nucl. and Part. Phys. (in press) and references cited therein; D.G. Caldi and A. Chodos, Phys. Rev. D36, 2876 (1987).Google Scholar
  21. 18.
    C.N. Leung, S.T. Love and W.A Bardeen, Nucl. Phys. B273, 649 (1986).ADSCrossRefGoogle Scholar
  22. 19.
    J. Kogut, E. Dagotto and a. Kocie, Phys. Rev. Lett. 60, 772 (1988) and Urbana Preprint No.: NSF-ITP-88–139/ILL-(TH)-88-#32 (1988).Google Scholar
  23. 20.
    S.L. Adler, C.G. Callan, Jr., D. J. Gross and R. Jackiw, Phys. Rev. D6, 2982 (1972).ADSCrossRefGoogle Scholar
  24. 21.
    M. Baker and K. Johnson, Physica (Utrecht) 96A, 120 (1979).MathSciNetADSGoogle Scholar
  25. 22.
    S.L. Adler and W.A. Bardeen, Phys. Rev. 182, 1517 (1969).ADSCrossRefGoogle Scholar
  26. 23.
    J.M. Cornwall and J. Tiktopoulos, Phys. Rev. D39, 334 (1989).ADSCrossRefGoogle Scholar
  27. 24.
    For a review of this early work, see: K. Wilson and J. K. gut, Phys. Reps. 12C, 78 (1974).ADSGoogle Scholar
  28. 25.
    E. Brezin, J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. D8, 434 (1973) [See, however, Section VI of this paper.];Google Scholar
  29. I. Jack and H. Osborne, J. Phys. A16, 1101 (1983);ADSGoogle Scholar
  30. M.E. Machacek and M.T. Vaughn, Nucl. Phys. B249, 70 (1985).ADSCrossRefGoogle Scholar
  31. The last two papers have caused some confusion in the literature; see, for example, K. Babu and E. Ma, Z. Phys. C31, 451 (1986).Google Scholar
  32. 26.
    E. Brezin, J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. D9, 1121 (1974).ADSGoogle Scholar
  33. 27.
    M.A.B. Bég and R.C. Furlong, Phys. Rev. D31, 1370 (1985).Google Scholar
  34. 28.
    K. Osterwalder and R. Schrader, Comm. Math. Phys. 42, 281 (1975); V. Glaser, ibid. 37, 257 (1974).CrossRefGoogle Scholar
  35. 29.
    J. Glimm and A. Jaffe, Phys. Rev. Lett. 33, 440 (1974).MathSciNetADSCrossRefGoogle Scholar
  36. 30.
    T.-D. Lee, Phys. Rev. 95, 1329 (1954).ADSzbMATHCrossRefGoogle Scholar
  37. 31.
    J. Glimm and A. Jaffe, Ann. Inst. Henri Poincaré 22, 97 (1975).MathSciNetGoogle Scholar
  38. 32.
    M. Aizenmann, Phys. Rev. Lett. 47, 1 (1981).CrossRefGoogle Scholar
  39. 33.
    J. Frohlich, Nucl. Phys. B200 [FS4], 281 (1982).MathSciNetADSCrossRefGoogle Scholar
  40. 34.
    S.O. Aks, J. Math. Phys. 6, 516 (1965).MathSciNetADSCrossRefGoogle Scholar
  41. 35.
    This follows from the fact that the dimension of the field is canonical; the theory thus asymptotically tends to one in which the two-point function is that of a free field-in other words, a free theory.Google Scholar
  42. 36.
    See, D.J.E. Callaway, ref. 4, for references up to early 1988. Recent papers upholding this result include the one cited in ref. 53 below.Google Scholar
  43. 37.
    W.A. Bardeen and M. Moshe, Phys. Rev. D28, 1372 (1983) and references cited therein.Google Scholar
  44. 38.
    M.A.B. Bég, Comments Nucl. Part. Phys. 17, 119 (1987).Google Scholar
  45. 39.
    D.J.E. Callaway, Nucl. Phys. B233, 189 (1984).ADSCrossRefGoogle Scholar
  46. 40.
    M.A.B. Bég, C. Panagiotakopoulos and A. Sirlin, Phys. Rev. Lett. 52, 883 (1984).ADSCrossRefGoogle Scholar
  47. 41.
    T. Appelquist and J. Carazzone, Phys. Rev. D11, 2856 (1975).ADSGoogle Scholar
  48. 42.
    N.P. Chang, A. Das and J. Perez-Mercador, Phys. Rev. D22, 1429 (1980) and references therein; E.S. Fradkin and O.R. Kalashnikov, Nuovo Cim. Lett. 29, 455 (1980) and references therein.Google Scholar
  49. 43.
    N.V. Butenin, ref. 12.Google Scholar
  50. 44.
    M.A.B. Bég, Phys. Rev. D39, 2373 (1989).ADSGoogle Scholar
  51. 45.
    Cf. J. Polchinski, Nucl. Phys. B231, 269 (1984).ADSCrossRefGoogle Scholar
  52. 46.
    M.A.B. Bég, Comments Nucl. Part. Phys. 18, 215 (1988).Google Scholar
  53. 47.
    S. Weinberg, Phys. Rev. Lett. 36, 294 (1976); A.D. Linde, JETP Lett. 23, 73 (1976).Google Scholar
  54. 48.
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B158, 295 (1979).ADSCrossRefGoogle Scholar
  55. 49.
    B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D16, 1519 (1977).ADSCrossRefGoogle Scholar
  56. 50.
    Absence of proton decay at the rate predicted is the principal argument against minimal SU(5).Google Scholar
  57. See, for example, W. Lucha, Comments Nucl. Part. Phys. 16, 155 (1986).Google Scholar
  58. For cosmological objections, see: A.D. Linde, in Proc. of XXIV Int..Conf. on High Energy Physics, R. Kotthaus and J. Kuhn eds. ( Springer Verlag, Berlin 1989 ) p. 357.Google Scholar
  59. 51.
    H.B. Nielsen and M. Ninomiya, Phys. Lett. B105, 219 (1981); Nucl. Phys. B185, 20 (1981) and B193, 173 (1981).MathSciNetGoogle Scholar
  60. 52.
    R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).ADSCrossRefGoogle Scholar
  61. 53.
    J. Kuti, L. Lin and Y. Shen, Phys. Rev. Lett. 61, 678 (1988).ADSCrossRefGoogle Scholar
  62. 54.
    M.B. Einhorn and D.N. Williams, Phys. Lett. B211, 457 (1988).Google Scholar
  63. 55.
    R. Blankenbecler and S.D. Drell, Phys. Rev. Lett. 61, 2324 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. A. B. Bég
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations