Testing the Higgs Sector and the Three Vector Boson Coupling with Electroweak Boson Pairs

Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


Electroweak vector boson pairs can be used to test the Higgs sector and the vector boson self-interactions of the Standard Model. They also constitute a background to new physics signals at future colliders. This is illustrated by vector boson pair production at large transverse momentum in hadronic collisions which may be a background which is relevant for Higgs tagging. The usefulness of electroweak boson pairs to probe the structure of the three vector boson vertex is demonstrated by W γ production at the Tevatron. For an integrated luminosity of 100 pb−1 the WW γ vertex can be measured with 25–40% accuracy in \(p\bar p \) collisons at \(\sqrt s = 1.8TeV\).


Higgs Boson Transverse Momentum Invariant Mass Vector Boson Helicity Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. S. L. Wu et al. in Proceedings of the ECFA Workshop on LEP200,Volume II, Aachen, Germany, 29 September - 1 October 1986, CERN 87–08, p. 312 and references therein.Google Scholar
  2. 2.
    B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D16: 1519 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    J. F. Gunion, G. L. Kane and J. Wudka, Nucl. Phys. B299: 231 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    V. Barger, J. L. Lopez and W. Putikka, Int. J. Mod. Phvs. A3: 2181 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    R. N. Calm, S. D. Ellis, R. K. Iileiss and W. J. Stirling Phvs. Rev. D35: 1626 (1987).ADSGoogle Scholar
  6. 6.
    R. K. Ellis, I. Hinchliffe, M. Soldate and J. J. van der Bij, Nucl. Phvs. B297: 221 (1988);ADSCrossRefGoogle Scholar
  7. I. Hinchliffe and S. F. Novaes, Phvs. Rev. D38: 3475 (1988).ADSGoogle Scholar
  8. 7.
    U. Baur, E. W. N. Glover and J. J. van der Bij, Nucl. Phvs. B318: 106 (1989).ADSCrossRefGoogle Scholar
  9. 8.
    R. K. Kleiss and W. J. Stirling, Phvs. Lett. 200B: 193 (1988).ADSGoogle Scholar
  10. 9.
    U. Baur and E. L. Berger, CERN-TH.5517/89, ANL-HEP-PR-89-S6, preprint (1989), to appear in Phys. Rev. D.Google Scholar
  11. 10.
    K. O. Mikaelian, Phvs. Rev. D17: 750 (1978);ADSGoogle Scholar
  12. R. W. Brown, D. Sandev and K. O. Mikaelian, Phys. Rev. D20: 1164 (1979)ADSCrossRefGoogle Scholar
  13. K. O. Mikaelian, M. A. Samuel and D. Sandev, Phys. Rev. Lett. 43: 746 (1979).ADSCrossRefGoogle Scholar
  14. 11.
    Zhu Dongpei, Phys. Rev. D22: 2266 (1980);ADSGoogle Scholar
  15. C. J. Goebel, F. Halzen and J. P. Leveille, Phvs. Rev. D23: 2682 (1981);ADSGoogle Scholar
  16. S. J. Brodsky and R. W. Brown, Phvs. Rev. Lett. 49: 966 (1982);MathSciNetADSCrossRefGoogle Scholar
  17. R. W. Brown, K. L. Kowalski and S. J. Brodsky, Phvs. Rev: D28: 624 (1983)ADSCrossRefGoogle Scholar
  18. M. A. Samuel, Phvs. Rev. D27: 2724 (1983).ADSGoogle Scholar
  19. 12.
    C. L. Bilchak, R. W. Brown and J. D. Stroughair, Phvs. Rev. D29: 375 (1984).ADSGoogle Scholar
  20. 13.
    G. N. Valuenzuela and J. Smith, Phvs. Rev. D31: 2787 (1985).ADSGoogle Scholar
  21. 14.
    J. C. Wallet, Z. Phys. C30: 575 (1986).Google Scholar
  22. 15.
    J. Cortes, K. Hagiwara and F. Herzog, Nucl. Phvs. B278: 26 (1986).ADSCrossRefGoogle Scholar
  23. 16.
    S.-C. Lee and W. C. Su, Phvs. Rev. D38: 2305 (1988).ADSGoogle Scholar
  24. 17.
    K. Hagiwara et al., Nucl. Phys. B282: 253 (1987).ADSCrossRefGoogle Scholar
  25. 18.
    U. Baur and D. Zeppenfeld, Nucl. Phvs. B308: 127 (1988).ADSCrossRefGoogle Scholar
  26. 19.
    J. Smith, D. Thomas and W. L. van Neerven, CPT-89/P.2239, preprint (1989), to appear in Z. Phys. C.Google Scholar
  27. 20.
    F. Herzog, Phvs. Lett. 148B: 355 (1984);ADSGoogle Scholar
  28. J. C. Wallet, Phys. Rev. D32: 813 (1985);Google Scholar
  29. A. Grau and J. A. Grifols, Phvs. Lett. 197B: 437 (1987).ADSGoogle Scholar
  30. 21.
    M. Suzuki, Phvs. Lett. 153B: 289 (1985).ADSGoogle Scholar
  31. 22.
    J. J. van der Bij, Phys. Rev. D35: 1088 (1987).CrossRefGoogle Scholar
  32. 23.
    J. A. Grifols, S. Penis and J. Solà, Int. J. Mod. Phvs. A3: 255 (1988).ADSGoogle Scholar
  33. 24.
    W. J. Marciano and A. Queijeiro, Phvs. Rev. D33: 3449 (1986).ADSGoogle Scholar
  34. 25.
    F. Hoogeveen, preprint MPI-PAE/PTh 25/87 (1987).Google Scholar
  35. 26.
    G. L. Kane, J. Vidal and C. P. Yuan, Phvs. Rev. D39: 2617 (1989).ADSGoogle Scholar
  36. 27.
    P. Méry, S. E. Moubarik, M. Perottet and F. M. Renard, CPT-89/P.2226. preprint (1989).Google Scholar
  37. 28.
    U. Baur and D. Zeppenfeld, Phvs. Lett. 201B: 383 (1988).ADSGoogle Scholar
  38. 29.
    R. K. hleiss and W..J. Stirling, Nucl. Phvs. B262: 235 (1985)ADSCrossRefGoogle Scholar
  39. J. F. Gunion and Z. Kunszt, Phys. Lett. 161B: 333 (1985).Google Scholar
  40. 30.
    K. Hagiwara and D. Zeppenfeld, Nucl. Phvs. B274: 1 (1986).ADSCrossRefGoogle Scholar
  41. 31.
    W. J. Stirling, R. Kleiss and S. D. Ellis, Phvs. Lett. 163B: 261 (1985)ADSGoogle Scholar
  42. J. F. Gunion, Z. Kunszt and M. Soldate, Phvs. Lett. 163B: 389 (1985).ADSGoogle Scholar
  43. 32.
    E. W. N. Glover, K. Hagiwara and A. D. Martin, Phvs. Lett. 16SB:2S9 (1986).Google Scholar
  44. 33.
    D. Duke and J. Owens, Phvs. Rev. D30: 49 (1984).ADSGoogle Scholar
  45. 34.
    S. Geer, these proeceedings.Google Scholar
  46. 35.
    R. Johnson, FERMILAB-Conf-S8/169, preprint (1988).Google Scholar
  47. 36.
    K. Gaemers and G. Gounaris, Z. Phvs. C1: 259 (1979).ADSGoogle Scholar
  48. 37.
    J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30: 1268 (1973)ADSCrossRefGoogle Scholar
  49. J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D10: 1145 (1974);ADSCrossRefGoogle Scholar
  50. C. H. Llewellyn Smith, Phys. Lett. 46B: 233 (1973);Google Scholar
  51. S. D. Joglekar, Ann. Phys. 83: 427 (1974).ADSCrossRefGoogle Scholar
  52. 38.
    T. Kamae, in “Proceedings of the XXIV Int. Conf. on High Energy Physics”, Munich, August 4–10, 1988, R. Kotthaus and J. H. Kühn (Eds.), p. 156 and references therein.Google Scholar
  53. 39.
    F. A. Berends et al., Phys. Lett. 103B: 124 (1981);Google Scholar
  54. P. Aurenche et al., Phys. Lett. 140B: 87 (1984)Google Scholar
  55. P. Aurenche et al., Nucl. Phys. B286: 553 (1987)ADSCrossRefGoogle Scholar
  56. V. Barger, T. Han, J. Ohnemus and D. Zeppenfeld, MAD/PH/515 preprint (1989).Google Scholar
  57. 40.
    R. Blair et al. (CDF Collaboration), preprint ANL-HEP-CP-89–07 and R. Blair, private communication.Google Scholar
  58. 41.
    S. A. Kahn et al., BNL informal report 3 /83 (1983).Google Scholar
  59. 42.
    Y. Morita, in “Proceedings of the Summer Study on the Physics of the Superconducting Supercollider”, Snowmass, Colorado, 1986, edited by R. Donaldson and J. Marx ( Division of Particles and Fields of the APS, New York, 1987 ), p. 194.Google Scholar
  60. 43.
    V. Barger, A. D. Martin and R. J. N. Phillips, Phvs. Lett. 125B: 339 (1983);ADSGoogle Scholar
  61. E. L. Berger, D. DiBitonto, M. Jacob and W. J. Stirling, Phys. Lett. 140B: 259 (1984).Google Scholar
  62. 44.
    F. Abe et al. (CDF Collaboration), Phvs. Rev. Lett. 62: 1005 (1989).ADSCrossRefGoogle Scholar
  63. 45.
    J. Stroughair and C. Bilchak, Z. Phvs. C26: 415 (1984);ADSGoogle Scholar
  64. J. Gunion, Z. Kunszt and M. Soldate, Phys. Lett. 163B: 389 (1985)Google Scholar
  65. J. Gunion and M. Soldate, Phys. Rev. D34: 826 (1986);ADSGoogle Scholar
  66. W. Stirling et al., Phvs. Lett. 163B: 261 (1985).ADSGoogle Scholar
  67. 46.
    U. Baur and D. Zeppenfeld, Nucl. Phvs. B325: 253 (1989).ADSCrossRefGoogle Scholar
  68. 47.
    D. Zeppenfeld, Phys. Lett. 183B: 380 (1987).Google Scholar
  69. 48.
    K. Hagiwara, J. Woodside and D. Zeppenfeld, MAD/PH/521 preprint, October 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • U. Baur
    • 1
  1. 1.Physics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations