Testing the Higgs Mechanism at High Energy Colliders

  • Michael S. Chanowitz
Part of the Ettore Majorana International Science Series book series (EMISS, volume 50)


In this talk I will review the implications of symmetry and unitarity for the physics of electroweak symmetry breaking and describe some of the signals of that physics that may emerge above 1 TeV at multi-TeV pp colliders. Though there is no direct experimental evidence, the Higgs mechanism1 is universally regarded as the only viable agent of SU(2) L × U(1) Y symmetry breaking.2 General considerations3,4 based only on unitarity and gauge symmetry insure that decisive experiments can be done within the next ten years to test the Higgs mechanism. (This ten-year unitarity bound does require the cooperation of the Good Lord and the U.S. Congress. Caution is therefore advisable: while the Former has always honored unitarity, the latter is a known source of unitarity violations.) The outcome of these experiments is certain to be exciting. If the Higgs mechanism is not confirmed, it would mean either that the electroweak interactions are not described by a gauge theory or that a breaking mechanism exists which is unimagined today. If the Higgs mechanism is confirmed than there may or may not be Higgs bosons, but there is necessarily a new force (the real #5) and associated new quanta.


Higgs Boson Higgs Sector Goldstone Boson Higgs Mechanism Partial Wave Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Higgs, Phys. Rev. Lett. 12:132, 1964;MathSciNetCrossRefGoogle Scholar
  2. F. Englert and R. Brout, ibid 13:321, 1964;MathSciNetADSCrossRefGoogle Scholar
  3. P. W. Higgs, Phys. Rev. 145:1156, 1966.MathSciNetADSCrossRefGoogle Scholar
  4. S. Weinberg, Phys. Rev. Lett. 19:1264, 1967;ADSCrossRefGoogle Scholar
  5. A. Salam, Proc. 8’th Nobel Symp., ed. N. Svartholm, p. 367, ( Almqvist Wiksells, Stockholm, 1968 ).Google Scholar
  6. 3.
    M. Chanowitz and M.K. Gaillard, Nucl. Phys. B261:379, 1985.ADSCrossRefGoogle Scholar
  7. 4.
    M. Chanowitz, M. Golden, and H. Georgi, Phys. Rev. D36:1490, 1987; Phys. Rev. Lett. 57:2344, (1986).ADSGoogle Scholar
  8. 5.
    R. Cahn and S. Dawson, Phys. Lett. 136B:196(1984).ADSGoogle Scholar
  9. 6.
    M. Chanowitz, LBL-26613, 1989 (to be published in Proc. of the INFN Eloisatron Workshop, Erice, 1988 ).Google Scholar
  10. 6a.
    R. Cahn et al., page 20, Experiments, Detectors and Experimental Areas for the SSC, eds. R. Donaldson and M. Gilchriese ( World Scientific, Singapore, 1988 ).Google Scholar
  11. 6b.
    High Luminosity Option for the LHC, ed. J. Mulvey, CERN 88–02, 1988.Google Scholar
  12. 7.
    M. Bento and C.H. Llewellyn Smith, Nucl. Phys. B289:36, (1987);ADSCrossRefGoogle Scholar
  13. G. Altarelli, B. Mele, F. Pitolli, Nucl. Phys. B287:205, (1987);ADSCrossRefGoogle Scholar
  14. J. Gunion, A. Tofighi-Niaki, Phys. Rev. D36:2671, (1987).ADSGoogle Scholar
  15. 8.
    Contributions by A. Seiden and J. Gunion to these proceedings.Google Scholar
  16. 9.
    M. Chanowitz, Ann. Rev. Nucl. Part. Sci. 38:323, 1988.ADSCrossRefGoogle Scholar
  17. 10.
    J.M. Cornwall, D. Levin, and G. Tiktopoulos, Phys. Rev. D10:1145, (1974).ADSGoogle Scholar
  18. B. Lee, C. Quigg, and H. Thacker, Phys. Rev. D16: 1519, 1977.ADSGoogle Scholar
  19. 12.
    T.D. Lee, C.N. Yang, Phys. Rev. Lett. 4:307 (1960);ADSCrossRefGoogle Scholar
  20. B.L.. Ioffe, L. B. Okun, L. B. Rudik, Soy. Phys. JETP Lett. 20:1281 (1965).Google Scholar
  21. 13.
    M. Chanowitz and T. Appelquist, Phys. Rev. Lett. 59:2405 (1987).ADSCrossRefGoogle Scholar
  22. 14.
    E. Glover and J. van der Bij, Nucl. Phys. B321:561, 1989.ADSCrossRefGoogle Scholar
  23. 15.
    M. Chanowitz and M. Golden, Phys. Rev. Lett. 61:1053, 1988, E 63:466, 1989;Google Scholar
  24. D. Dicus and R. Vega, Phys. Lett. B217:194, 1989.ADSGoogle Scholar
  25. 16.
    G. Altarelli, p.36, Proc. Workshop on Future Accelerators, La Thuile, 1987, ed J. Mulvey, CERN 87–07, Vol. I.Google Scholar
  26. 17.
    M. Chanowitz, p. 183, Observable Standard Model Physics at the SSC, eds. H-U Bengtsson et al. ( World Scientific, Singapore, 1986 ).Google Scholar
  27. R. Cahn and M. Chanowitz, Phys. Rev. Lett. 56:1327, 1986.ADSCrossRefGoogle Scholar
  28. V. Barger, T. Han, and R. Phillips, Phys. Rev. D37:2005, 1988.ADSGoogle Scholar
  29. 20.
    G. Kane and C. Yuan, ANL-HEP-PR-89–43, 1989.Google Scholar
  30. 21.
    M. Chanowitz and M. Gaillard, Phys. Lett. 142B:85, 1984;ADSGoogle Scholar
  31. M. Chanowitz and M. Gaillard, ref. (3); S. Dawson, Nucl. Phys. B29:42, 1985;Google Scholar
  32. G. Kane, W. Repko, and W. Rolnick, Phys. Lett. 148B:367, 1984.ADSGoogle Scholar
  33. 22.
    J. Donoghue, C. Ramirez, G. Valencia, Phys. Rev. D38:2195, (1988).Google Scholar
  34. 23.
    M. Chanowitz and M. Golden, erratum to ref. 15, Phys. Rev. Lett. E63:466, (1986)ADSGoogle Scholar
  35. 24.
    D. Dicus and R. Vega, UCD-89–9, 1989; Phys. Rev. D37:2474 (1988).Google Scholar
  36. 25.
    M. Berger and M. Chanowitz, work in progress.Google Scholar
  37. 26.
    E. Eichten et al., Rev. Mod. Phys. 56:579, 1984.ADSCrossRefGoogle Scholar
  38. 27.
    J. Gunion, these procedings.Google Scholar
  39. 28.
    In that event we would be strongly motivated to sharpen or replace the naturalness upper limit on A5USY, which is now a matter of taste.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michael S. Chanowitz
    • 1
  1. 1.Theoretical Physics GroupLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations