The Strength of Selection: Intraspecific Variation in Host-Plant Quality and the Fitness of Herbivores

  • Sharon Y. Strauss
  • Richard Karban

Abstract

To date, the body of evidence that supports fine-scale local adaptation by herbivores to individual host-plant phenotypes has been found in insects that are relatively sedentary and specialized. At the extreme, such species can consist of genetically divergent populations that are each adapted to neighboring individual plant phenotypes. While such cases have been documented, there are also other instances in which local adaptation has not been shown to occur (Cobb and Whitham 1993, Strauss 1997). Local adaptation is a result of differing selective regimes imposed by different host-plant individuals. Conditions favoring local adaptation can be offset, however, by factors that tend to homogenize subpopulations genetically (e.g., gene flow among populations of herbivores on these plants). A more general issue is: How likely is it to find fine-scale local adaptation to individual plants in herbivorous insects? In this chapter, we explore the strength of selection imposed on insect populations by intraspecific variation in the host plant. We try to relate this value to the strength of other effects, such as nongenetic parental effects that could influence insect performance. Finally, we ask how much gene flow would be required to homogenize these populations genetically, thus preventing local adaptation.

Keywords

Host Plant Local Adaptation Intraspecific Variation Gypsy Moth Relative Fitness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstad, D. N. and K. W. Corbin. 1990. Scale insect allozyme differentiation within and between host trees. Evol. Ecol. 4: 43–56.CrossRefGoogle Scholar
  2. Alstad, D. N., S. C. Hotchkiss, and K. W. Corbin. 1991. Gene flow estimates implicate selection as a cause of scale insect population structure. Evol. Ecol. 5: 88–92.CrossRefGoogle Scholar
  3. Berenbaum, M. R. and A. R. Zangerl. 1992. Genetics of behavioral and physiological re- sistance to host furanocoumarins in the parsnip webworm. Evolution 46: 1373–1384.CrossRefGoogle Scholar
  4. Berenbaum, M. R. and A. R. Zangerl. 1993. Furanocoumarin metabolism in Papilio polyxenes: Biochemistry, genetic variability and ecological significance. Oecologia 95: 370–375.CrossRefGoogle Scholar
  5. Bernays, E. and M. Graham. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 68: 886–892.CrossRefGoogle Scholar
  6. Boggs, C. L. and L. E. Gilbert. 1979. Male contribution to egg production in butterflies: Evidence for transfer of nutrients at mating. Science 206: 83–84.PubMedCrossRefGoogle Scholar
  7. Cobb, N. S. and T. G. Whitham. 1993. Herbivore deme formation on individual trees: A test case. Oecologia 94: 496–502.CrossRefGoogle Scholar
  8. Cohen, M. B., M. A. Schuler, and M. R. Berenbaum. 1992. A host-inducible ctychrome P450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. 89: 10920–10924.PubMedCrossRefGoogle Scholar
  9. Dicke, M., P. van Baarlen, R. Wessels, and H. Dijkman. 1993. Herbivory induced systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. J. Chem. Ecol. 19: 581–599.CrossRefGoogle Scholar
  10. Edmunds, G. F. and D. N. Alstad. 1978. Coevolution in insect herbivores and conifers. Science 199: 941–945.PubMedCrossRefGoogle Scholar
  11. Fox, C. W. 1993. Maternal and genetic influences on egg size and larval performance in a seed beetle (Callosobruchus maculates): Multigenerational transmission of a maternal effect? Heredity 73: 509–517.CrossRefGoogle Scholar
  12. Fox, C. W. and R. L. Caldwell. 1994. Host-associated fitness trade-offs do not limit the evolution of diet breadth in the small milkweed bug Lygaeus kalmii (Hemiptera: Lygaeidae). Oecologia 97: 382–389.Google Scholar
  13. Fox, C. W. and H. Dingle. 1994. Dietary mediation of maternal age effects on offspring perfromance in a seed beetle (Coleoptera: Bruchidae). Funct. Ecol. 8: 600–606.CrossRefGoogle Scholar
  14. Fox, C. W., L. A. McLennan, and T. A. Mousseau. 1995. Male body size affects lifetime female reproductive success in a seed beetle. Anim. Behay. 50: 281–284.CrossRefGoogle Scholar
  15. Fox, C. W., K. J. Waddell, and T. A. Mousseau. 1994. Host-associated fitness vaiation in a seed beetle (Coleoptera: Bruchidae): Evidence for local adaptation to a poor quality host. Oecologia 99: 329–336.CrossRefGoogle Scholar
  16. Futuyma, D. J., R. P. Cort, and Ivan Noordwijk. 1984. Adaptation to host plants in the fall cankerworm (Alsophila pometaria) and its bearing on the evolution of host affiliation in phytophagous insects. Am. Nat. 123: 287–296.CrossRefGoogle Scholar
  17. Futuyma, D. J., C. Hermann, S. Milstein, and M. C. Keese. 1993. Apparent transgenerational effects of host plant in the leaf beetle Ophraella notulata (Coleoptera: Chrysomelidae). Oecologia 96: 365–372.CrossRefGoogle Scholar
  18. Futuyma, D. J. and S. C. Peterson. 1985. Genetic variation in use of resources by insects. Annu. Rev. Entomol. 30: 217–238.CrossRefGoogle Scholar
  19. Gould, F. 1988. Stress specificity of maternal effects in Heliothis virescens (Boddie) (Lepidoptera: Noctuidae) larvae. Mem. Ent. Soc. Can. 146: 191–197.CrossRefGoogle Scholar
  20. Haldane, J. B. S. 1930. A mathematical theory of natural and artificial: Part IV. Isolation. Proc. Cambridge Phil. Soc. 26: 220–230.CrossRefGoogle Scholar
  21. Hanks, L. M. and R. F. Denno. 1994. Local adaptation in the armored scale insect Pseudaulacaspis pentagona (Homoptera: Diaspididae). Ecology 75: 2301–2310.CrossRefGoogle Scholar
  22. Horton, D. R., J. L. Capinera, and P. L. Chapman. 1988. Local differences in host use by two populations of the Colorado potato beetle. Ecology 69: 823–831.CrossRefGoogle Scholar
  23. Huettel, M. D. and G. L. Bush. 1972. The genetics of host selection and its bearing on sympatric speciation in Procecidochares (Diptera: Tephritidae). Entomol. Exp. Appl. 15: 465.CrossRefGoogle Scholar
  24. Jaenike, J. 1989. Genetics of oviposition site preference in Drosophila tripunctata. Heredity 59: 363–369.CrossRefGoogle Scholar
  25. Karban, R. 1989. Fine-scale adaptation of herbivorous thrips to individual host plants. Nature 340: 60–61.CrossRefGoogle Scholar
  26. Karban, R. and S. Y. Strauss. 1993. Colonization of new host plant individuals by locally adapted thrips. Ecography 17: 82–87.CrossRefGoogle Scholar
  27. Komatsu, T. and S. Akimoto. 1995. Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecol. Entomol. 20: 33–42.CrossRefGoogle Scholar
  28. Lindroth, R. L. and A. V. Weisbrod. 1991. Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem. Syst. Ecol. 19: 97–103.CrossRefGoogle Scholar
  29. Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1981. Genetic variation in a population of ponderosa pine. Heredity 46: 407–426.CrossRefGoogle Scholar
  30. Mopper, S., M. Beck, D. Simberloff, and P. Stiling. 1995. Local adaptation and agents of selection in a mobile insect. Evolution 49: 810–815.CrossRefGoogle Scholar
  31. Nagylaki, T. 1978. The geographical structure of populations. Pp. 588–624 in S. A. Levin (Ed.), Studies in Mathematics, 16th ed. (Pt. I I ). Mathematical Association of America Washington, DC.Google Scholar
  32. Ng, D. 1988. A novel level of interactions in plant-insect systems. Nature 334: 61–62.CrossRefGoogle Scholar
  33. Nitao, J. K. 1989. Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarin-containing plants. Ecology 70: 629–635.CrossRefGoogle Scholar
  34. Pashley, D. P. 1988. Quantitative gentics, development and physiological adaptation in host strains of the fall armyworm. Evolution 42: 93–102.CrossRefGoogle Scholar
  35. Pashley, D. P., T. N. Hardy, and A. M. Hammond. 1995. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88: 748–755.Google Scholar
  36. Rausher, M. D. 1984. Trade-offs in performance on different hosts: Evidence from within-and between-site variation in the beetle Deloyola guttata. Evolution 38: 582–595.CrossRefGoogle Scholar
  37. Rice, W. R. 1983. Sexual reproduction: an adaptation reducing parent-offspring contagion. Evolution 37: 1317–1320.CrossRefGoogle Scholar
  38. Rossiter, M. C. 1991a. Maternal effects generate variation in life history: Consequences of egg weight plasticity in the gypsy moth. Funct. Ecol. 5: 386–393.CrossRefGoogle Scholar
  39. Rossiter, M. C. 1991b. Environmentally based maternal effects: A hidden force in insect population dynamics. Oecologia 87: 288–294.CrossRefGoogle Scholar
  40. Rossiter, M. C., D. L. Cox-Foster, and M. A. Briggs. 1993. Initiation of maternal effects in Lymantria dispar: Genetic and ecological components of egg provisioning. J. Evol. Biol. 6: 577–589.CrossRefGoogle Scholar
  41. Schaal, B. A. 1975. Population structure and local differentiation in Liatris cylindrica. Am. Nat. 109: 511–528.CrossRefGoogle Scholar
  42. Schnabel, A. and J. L. Hamrick. 1990. Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Syst. Bot. 15: 240–251.CrossRefGoogle Scholar
  43. Scriber, J. M., R. L. Lindroth, and J. K. Nitao. 199la. Toxic phenolic glycosides from Populus: Physiological adaptations of the western North American tiger swallowtail butterfly, Papilio rutulus (Lepidoptera: Papilionidae). Great Lakes Entom. 24: 173–180.Google Scholar
  44. Scriber, J. M., J. Potter, and K. Johnson. 199lb. Lack of physiological improvement in performance of Callosamia promethea larvae on local host plant favorites. Oecologia 86:232–235.Google Scholar
  45. Sierra, J. R., W. D. Weggen, and H. Schmid. 1976. Transfer of cantharidin during copulation from adult male to the female Lytta vesicatoria (Spanish flies). Experientia 32: 142–144.CrossRefGoogle Scholar
  46. Slatkin, M. 1985. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16: 393–430.CrossRefGoogle Scholar
  47. Slatkin, M. 1995. Epistatic selection opposed by immigration in multiple locus genetic systems. J. Evol. Biol. 8: 623–633.CrossRefGoogle Scholar
  48. Smith, C. M. 1989. Plant Resistance to Insects: A Fundamental Approach. John Wiley, New York.Google Scholar
  49. Strauss, S. Y. 1997. Lack of evidence for local adaptation to individual plant clones or site by a mobile specialist herbivore. Oecologia, 110: 77–85.CrossRefGoogle Scholar
  50. Strauss, S. Y. and R. Karban. 1994. The significance of outcrossing in an intimate plant/herbivore relationship: I. Does outcrossing provide an escape for progeny from herbivores adapted to the parental plant? Evolution 48: 454–464.CrossRefGoogle Scholar
  51. Thompson, J. N. 1988. Evolutionary genetics of oviposition preference in swallowtail butterflies. Evolution 42: 1223–1234.CrossRefGoogle Scholar
  52. Thompson, J. N. and O. Pellmyr. 1991. Evolution of oviposition behavior and host preference in Lepidoptera. Ann. Rev. Ent. 36: 65–89.CrossRefGoogle Scholar
  53. Unruh, T. R. and R. F. Luck. 1987. Deme formation in scale insects: A test with the pinyon needle scale and a review of other evidence. Ecol. Entomol.2: 439–449.Google Scholar
  54. Vet, L. E. M. and M. Dicke, 1992. Ecology of infochemical use by natural enemies in a tritrophic ontext. Ann. Rev. Ent. 37: 141–172.CrossRefGoogle Scholar
  55. Via, S. 1989. Field estimation of variation in host plant use between local populations of the pea aphids from two crops. Ecol. Entomol.4: 357–364.Google Scholar
  56. Via, S. 1990. Ecological genetics and host adaptation in herbivorous species: The experimental study of evolution in natural and agricultural systems. Ann. Rev. Entomol. 35: 421–446.CrossRefGoogle Scholar
  57. Via, S. and J. Conner. 1995. Evolution in heterogeneous environments: Genetic variablity within and across different grains in Tribolium castaneum. Heredity 74: 80–90.PubMedCrossRefGoogle Scholar
  58. Wainhouse, D. and R. S. Howell. 1983. Intraspecific variation in beech scale populations and in susceptiblity of their host Fagus sylvaticus. Ecol. Entomol. 8: 351–359.CrossRefGoogle Scholar
  59. Weber, G. 1985a. On the ecological genetics of Sitobion avenae (F.) (Hemiptera: Aphididae). Zang. Ent. 100: 100–110.CrossRefGoogle Scholar
  60. Weber, G. 1985b. On the ecological genetics of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Zang. Ent. 100: 451–458.CrossRefGoogle Scholar
  61. Weis, A. E. and W. G. Abrahamson. 1986. Evolution of host-plant manipulation by gall-makers: Ecological and genetic factors in the Solidago-Eurosta system. Am. Nat.27: 681–695.Google Scholar
  62. Weis, A. E. and W. L. Gorman. 1990. Measuring selection on reaction norms: An exploration of the Eurosta-Solidago system. Evolution 44: 820–831.CrossRefGoogle Scholar
  63. Weis, A. E. and A. Kapelinksi. 1994. Variable selection on Eurosta’s gall size: II. A path analysis of the ecological factors behind selection. Evolution 48: 734–745.CrossRefGoogle Scholar
  64. Weis, A. E., W. G. Abrahamson. and M. C. Andersen. 1992. Variable selection on Eurosta’s gall size: I. The extent and nature of variation in phenotypic selection. Evolution 46: 1674–1697.Google Scholar
  65. Wood, T. K. and S. I. Guttman. 1983. Enchenopa binotata complex: Sympatric speciation? Science 220: 310–312.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Sharon Y. Strauss
    • 1
  • Richard Karban
    • 2
  1. 1.Section of Evolution and EcologyUSA
  2. 2.Department of EntomologyUniversity of California at DavisDavisUSA

Personalised recommendations