Skip to main content

Population-Level Adaptation to Host-Plant Chemicals: The Role of Cytochrome P450 Monooxygenases

  • Chapter
Genetic Structure and Local Adaptation in Natural Insect Populations

Abstract

The ability of herbivorous insects to specialize with respect to the range of host species utilized is perhaps unrivaled by any other group of plant-feeding animals. Over 90% of the known species of herbivorous insects feed on three or fewer plant families (Bernays and Graham 1988). Indeed, this predilection for specialization may well be the principal factor involved in the tremendous diversification of this group of organisms (Ehrlich and Raven 1964). Flowering plants and the herbivores that consume them collectively comprise approximately half of the earth’s biota; as such, interactions between plants and their associated herbivores have profound consequences on the structure and function of the vast majority of terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, J. D., P. G. Kevan, and R. M. Gadawski. 1984. Hop tree (Ptelea trifoliata) in Canada: Population and reproductive biology of a rare species. Can. J. Bot. 63: 1928–1935.

    Google Scholar 

  • Argentine, J. A., J. M. Clark, and H. Lin. 1992. Genetics and biochemical mechanisms of abamectin resistance in two isogenic strains of Colorado potato beetle. Pest. Biochem. Physiol. 44: 191–207.

    Article  CAS  Google Scholar 

  • Bailey, V. L. 1962. Revision of the genus Ptelea (Rutaceae). Brittonia 14: 1–45.

    Article  CAS  Google Scholar 

  • Bailey, V. L., S. B. Herlin, and H. E. Brown. 1970. Ptelea trifoliata ssp. trifoliata (Ru- taceae) in deciduous forest regions of eastern North America. Brittonia 22: 346–358.

    Google Scholar 

  • Berenbaum, M. R. 1981. Effects of linear furanocoumarins on an adapted specialist insect (Papilio polyxenes). Ecol. Entomol. 6: 345–351.

    Article  Google Scholar 

  • Berenbaum, M. R. 1986. Target-site insensitivity in plant insect interactions. Pp. 257–272 in L. Brattsten and S. Ahmad (Eds.), Molecular Mechanisms in Insect-Plant Associations. Plenum Press, New York.

    Chapter  Google Scholar 

  • Berenbaum, M. R. 1991a. Coumarins. Pp. 221–249 in G. Rosenthal and M. Berenbaum (Eds.), Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Berenbaum, M. R. 1991b. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17: 213–222.

    Article  CAS  Google Scholar 

  • Berenbaum, M. R. 1995a. Phototoxicity of plant secondary metabolites: Insect and mammalian perspectives. Arch. Insect Biochem. Physiol. 29: 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum, M. R. 1995b. Metabolic detoxification of plant prooxidants. Pp. 181–209 in S. Ahmad (Ed.), Oxidative Stress and Antioxidant Defense in Biology. Routledge, Chapman Hall, New York.

    Chapter  Google Scholar 

  • Berenbaum, M. R. and A. R. Zangerl. 1992a. Genetics of secondary metabolism and herbivore resistance in plants. Pp. 415–438 in G. Rosenthal and M. Berenbaum, (Eds.), Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 2, 2nd ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Berenbaum, M. R. and A. R. Zangerl. 1992b. Genetics of physiological and behavioral re- sistance to host furanocoumarins in the parsnip webworm. Evolution 46: 1373–1384.

    Article  Google Scholar 

  • Berenbaum, M. R. and A. R. Zangerl. 1993. Furanocoumarin metabolism in Papilio polyxenes: Genetic variability, biochemistry, and ecological significance. Oecologia 95: 370–375.

    Article  Google Scholar 

  • Berenbaum, M. R., A. R. Zangerl, and K. Lee. 1989. Chemical barriers to adaptation by a specialist herbivore. Oecologia 80: 501–506.

    Article  Google Scholar 

  • Bernays, E. and M. Graham. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.

    Article  Google Scholar 

  • Bertilsson, L. 1995. Geographical/interracial differences in polymorphic drug oxidation. Clin. Pharmcokinet. 29: 192–209.

    Article  CAS  Google Scholar 

  • Bossait, J. L. 1993. Differential selection and adaptation in different host environments: Genotypic and phenotypic variation in host use traits in the tiger swallowtail butterfly, Papilio glaucus (Laws.). Ph.D. dissertation, Michigan State University, East Lansing, MI.

    Google Scholar 

  • Bossait, J. L. and J. M. Scriber. 1995a. Genetic variation in oviposition preference in tiger swallowtail butterflies: Interspecific, interpopulation and interindividual comparisons. Pp. 183–193 in J. M. Scriber, Y. Tsubaki, and R.C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.

    Google Scholar 

  • Brausten, L. B. 1992. Metabolic defenses against plant allelochemicals. Pp. 175–242 in G. Rosenthal and M. Berenbaum (Eds.) Herbivores: Their Interactions with Secondary Plant MetabolitesVol. 2. Academic Press, San Diego, CA.

    Google Scholar 

  • Carroll, S. P. and C. Boyd. 1992. Host race radiation in the soapberry bug: Natural history with the history. Evolution 46: 1052–1069.

    Article  Google Scholar 

  • Chapman, R. 1982. The Insects: Structure and Function. Elsevier, New York.

    Google Scholar 

  • Cohen, M. R., M. R. Berenbaum, and M. A. Schuler. 1989. Induction of cytochrome P450-mediated detoxification in the black swallowtail. J. Chem. Ecol. 15: 2347–2355.

    Article  CAS  Google Scholar 

  • Cohen, M. B., J. F. Koener, and R. Feyereisen. 1994. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the housefly. Gene 146: 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. B., M. A. Schuler, and M. R. Berenbaum. 1992. A host-inducible cytochrome P450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 89: 10920–10924.

    Article  PubMed  CAS  Google Scholar 

  • Devonshire, A. L. and L. M. Field. 1991. Gene amplification and insecticide resistance. Annu. Rev. Entomol. 36: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, D. L. 1969. Coumarins and alkaloids of the genus Ptelea. Phytochem. 8: 1013–1020.

    Article  CAS  Google Scholar 

  • Ehrlich, P. R. and P. R. Raven. 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Feder, J. L., T. A. Hunt, and G. L. Bush. 1990. The effect of climate, host plant phenology, and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella. Entomol. Exp. Appl. 69: 117–135.

    Article  Google Scholar 

  • Fernandez-Salguero, P., S. M. G. Hoffman, S. Cholerton, H. Mohrenweiser, H. Raunio, A. Rautio, O. Pelkonen, J.-D. Huang, W. E. Evans, J. R. Idle, and F. J. Gonzalez. 1995. A genetic polymorphism in coumarin 7-hydroxylation: Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 57: 651–660.

    PubMed  CAS  Google Scholar 

  • Feyereisen, R. 1995. Molecular biology of insecticide resistance. Tox. Lett. 82/83: 83–90.

    Google Scholar 

  • Feyereisen, R., J. F. Andersen, F. A. Carino, M. B. Cohen, and J. F. Koener. 1995. Cytochrome P450 in the housefly: Structure, catalytic activity, and regulation of expression in an insecticide-resistant strain. J. Pestic. Sci. 43: 233–239.

    Article  Google Scholar 

  • Gaedigk, A., M. Blum, R. Gaedigk, M. Eichelbaum, and U. A. Meyer. 1991. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am. J. Hum. Genet. 48: 943–950.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. A. and S. M. F. de Morais. 1994. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 285–299.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, F. J. and D. W. Nebert. 1990. Evolution of the P450 gene superfamily. Trends in Genetics 6: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F R. 1994. Catalytic selectivity of human cytochrome P450 enzymes: Relevance to drug metabolism and toxicity. Tox. Lett. 70: 133–138.

    Article  CAS  Google Scholar 

  • Hallstrom, I. 1987. Genetic variation in cytochrome P450-dependent demethylation in Drosophila melanogaster. Biochem. Pharmacol. 36: 2279–2282.

    Article  CAS  Google Scholar 

  • Hallstrom, I. and R. Grafstrom. 1981. The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster: II. Enzyme induction and metabolism of benzo[a]pyrene. Chem.-Biol. Interactions 34: 145–159.

    Article  CAS  Google Scholar 

  • Hammock, B. D., S. M. Mumby, and R. W. Lee. 1977. Mechanisms of resistance to the juvenoid methoprene in the housefly Musca domestica (Laws.). Pestic. Biochem. Physiol. 7: 261–272.

    Article  CAS  Google Scholar 

  • Hedrick, R. W. and J. F. McDonald. 1980. Regulatory gene adaptation: An evolutionary model. Heredity 45: 83–97.

    Article  PubMed  CAS  Google Scholar 

  • Hegnauer, R. 1966–1973. Chemotaxonomie der Pflanzen. Birkhauser Verlag, Basel, France.

    Google Scholar 

  • Heininger, E. 1989. Effects of furocoumarin and furoquinoline allelochemicals on host-plant utilization by Papilionidae. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.

    Google Scholar 

  • Hung, C. F. 1996. Isolation and characterization of cytochrome P450s from Papilio polyxenes and Papilio glaucus. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.

    Google Scholar 

  • Hung, C. E, H. Prapaipong, M. R. Berenbaum, and M. A. Schuler. 1995. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochem. Mol. Biol. 25: 89–99.

    Article  CAS  Google Scholar 

  • Johannson, I., E. Lundqvist, L. Bertilsson, M.-L. Dahl, F. Sjoqvist, and M. IngelmanSundberg. 1993. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. USA 90: 11825–11829.

    Article  Google Scholar 

  • Kimura, S., M. Umeno, R. C. Skoda, U. A. Meyer, and F. J. Gonzalez. 1989. The human debrisoquine 4—hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Gen. 45: 889–904.

    CAS  Google Scholar 

  • Krynetskii, E. Y. 1996. Polymorphism of drug-metabolizing enzymes: Gene structure and enzyme activity (a review). Molec. Biol. 30: 17–23.

    Google Scholar 

  • Kuhr, R. J. 1971. Comparative metabolism of carbaryl by resistant and susceptible strains of the cabbage looper. J. Econ. Entomol. 64: 1373–1378.

    PubMed  CAS  Google Scholar 

  • Liu, N, T. Tornita, and J. G. Scott. 1995. Allele-specific PCR reveals that CYP6D1 is on chromosome 1 in the housefly, Musca domestica. Experientia 51:164–167.

    Google Scholar 

  • London, S. J., A. K. Daly, J. Cooper, C. L. Carpenter, W. C. Navidi, L. Ding, and J. R. Idle. 1996. Lung cancer risk in relation to the CYP2E1 RsaI genetic polymorphism among African-Americans and Caucasians in Los Angeles County. Pharmacogenetics 6: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Ma, R., M. B. Cohen, M. R. Berenbaum, and M.A. Schuler. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch. Biochem. Biophys. 310: 332–340.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F. 1975. Toxicology of Insecticides. Plenum Press, New York.

    Book  Google Scholar 

  • Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Murray, R. D. H., J. Mendez, and S. A. Brown. 1982. The Natural Coumarins: Occurence, Chemistry, and Biochemistry. John Wiley, New York.

    Google Scholar 

  • Neal, J. J. 1987. Ecological aspects of insect detoxication enzymes and their interaction with plant allelochemicals. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.

    Google Scholar 

  • Nelson, D, T. Kamataki, D. J. Waxman, F.P. Guengerich, R. W. Estabrook, R. Feyereisen, E J. Gonzalez, M. J. Coon, I. C. Gunsalus, O. Gotoh, K. Okuda, and D. W. Nebert. 1993. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1–51.

    Article  PubMed  CAS  Google Scholar 

  • Oppenorth, F. J. 1984. Biochemistry of insecticide resistance. Pestic. Biochem. Physiol. 22: 187–193.

    Article  Google Scholar 

  • Pashley, D. P. 1988. Quantitative genetics, development, and physiological adaptation in host strains of fall annyworm. Evolution 42: 93–102.

    Article  Google Scholar 

  • Plapp, F. W. Jr. and J. E. Casida. 1969. Genetic control of housefly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance. J. Econ. Entomol. 62: 1174–1179.

    PubMed  CAS  Google Scholar 

  • Rosenthal, G. and M. R. Berenbaum. 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, San Diego, CA.

    Google Scholar 

  • Schonbrod, R. D., M. A. Q. Khan, L. C. Terriere, and F. W. Plapp Jr. 1968. Microsomal oxidases in the housefly: A survey of fourteen strains. Life Sciences 7: 681–688.

    Article  CAS  Google Scholar 

  • Scott, J. G. 1996. Cytochrome P450 monooxygenase-mediated resistance to insecticides. J. Pestic. Sci. 21: 241–245.

    Article  CAS  Google Scholar 

  • Scriber, J. M. 1986. Origins of the regional feeding abilities in the tiger swallowtail butterfly: Ecological monophagy and the Papilio glaucus australis subspecies in Florida. 0ecologia 71: 94–103.

    Article  Google Scholar 

  • Scriber, J. M. 1988. Tale of the tiger: Beringial biogeography, binomial classification, and breakfast choices in the Papilio glaucus complex of butterflies. Pp. 241–301 in K. C. Spencer (Ed.), Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Scriber, J. M. 1995. Overview of swallowtail butterflies: Taxonomic and distributional latitude. Pp. 3–8 in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.

    Google Scholar 

  • Scriber, J. M. and S. H. Gage. 1995. Pollution and global climate change: Plant ecotones, butterfly hybrid zones and changes in biodiversity. Pp. 319–344 in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.

    Google Scholar 

  • Skoda, R. C., F. J. Gonzalez, A. Demierre, and U. A. Meyer. 1988. Two mutant alleles of the human cytochrome P-450db I gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Natl. Acad. Sci. USA 85: 5240–5243.

    Article  PubMed  CAS  Google Scholar 

  • Tallamy, D., 1986. Behavioral adaptations in insects to plant allelochemicals. Pp. 273–300 in L. B. Brattsten and S. Ahmad (Eds.), Molecular Aspects of Insect–Plant Associations. Plenum Press, New York.

    Chapter  Google Scholar 

  • Terriere, L. C. 1968. The oxidation of pesticide: The comparative approach. Pp. 175–196 in E. Hodgson (Ed.), The Enzymatic Oxidation of Toxicants. North Carolina State University Press, Raleigh, NC.

    Google Scholar 

  • Tomita, T. and J. G. Scott. 1995. cDNA and deduced protein sequence of CYP6D1—the putative gene for a cytochrome P450 responsible for pyrethroid resistance in a housefly. Insect Biochem. Mol. Biol. 25: 275–283.

    Google Scholar 

  • Via, S. 1991. Specialized host plant performance of pea aphid clones is not altered by experience. Ecology 72: 1420–1427.

    Article  Google Scholar 

  • Walsh, J. B. 1995. How often do duplicated genes evolve new functions? Genetics 139: 421–428.

    PubMed  CAS  Google Scholar 

  • Zangerl, A. R. and M. R. Berenbaum. 1993. Plant chemistry and insect adaptations to plant chemistry as determinants of hostplant utilization patterns. Ecology 74: 47–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berenbaum, M.R., Zangerl, A.R. (1998). Population-Level Adaptation to Host-Plant Chemicals: The Role of Cytochrome P450 Monooxygenases. In: Mopper, S., Strauss, S.Y. (eds) Genetic Structure and Local Adaptation in Natural Insect Populations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0902-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0902-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0904-9

  • Online ISBN: 978-1-4757-0902-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics