Population-Level Adaptation to Host-Plant Chemicals: The Role of Cytochrome P450 Monooxygenases

  • May R. Berenbaum
  • Arthur R. Zangerl


The ability of herbivorous insects to specialize with respect to the range of host species utilized is perhaps unrivaled by any other group of plant-feeding animals. Over 90% of the known species of herbivorous insects feed on three or fewer plant families (Bernays and Graham 1988). Indeed, this predilection for specialization may well be the principal factor involved in the tremendous diversification of this group of organisms (Ehrlich and Raven 1964). Flowering plants and the herbivores that consume them collectively comprise approximately half of the earth’s biota; as such, interactions between plants and their associated herbivores have profound consequences on the structure and function of the vast majority of terrestrial ecosystems.


Herbivorous Insect Insecticide Resistance Colorado Potato Beetle Restriction Fragment Length Poly Plant Allelochemicals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrose, J. D., P. G. Kevan, and R. M. Gadawski. 1984. Hop tree (Ptelea trifoliata) in Canada: Population and reproductive biology of a rare species. Can. J. Bot. 63: 1928–1935.Google Scholar
  2. Argentine, J. A., J. M. Clark, and H. Lin. 1992. Genetics and biochemical mechanisms of abamectin resistance in two isogenic strains of Colorado potato beetle. Pest. Biochem. Physiol. 44: 191–207.CrossRefGoogle Scholar
  3. Bailey, V. L. 1962. Revision of the genus Ptelea (Rutaceae). Brittonia 14: 1–45.CrossRefGoogle Scholar
  4. Bailey, V. L., S. B. Herlin, and H. E. Brown. 1970. Ptelea trifoliata ssp. trifoliata (Ru- taceae) in deciduous forest regions of eastern North America. Brittonia 22: 346–358.Google Scholar
  5. Berenbaum, M. R. 1981. Effects of linear furanocoumarins on an adapted specialist insect (Papilio polyxenes). Ecol. Entomol. 6: 345–351.CrossRefGoogle Scholar
  6. Berenbaum, M. R. 1986. Target-site insensitivity in plant insect interactions. Pp. 257–272 in L. Brattsten and S. Ahmad (Eds.), Molecular Mechanisms in Insect-Plant Associations. Plenum Press, New York.CrossRefGoogle Scholar
  7. Berenbaum, M. R. 1991a. Coumarins. Pp. 221–249 in G. Rosenthal and M. Berenbaum (Eds.), Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, New York.Google Scholar
  8. Berenbaum, M. R. 1991b. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17: 213–222.CrossRefGoogle Scholar
  9. Berenbaum, M. R. 1995a. Phototoxicity of plant secondary metabolites: Insect and mammalian perspectives. Arch. Insect Biochem. Physiol. 29: 119–134.PubMedCrossRefGoogle Scholar
  10. Berenbaum, M. R. 1995b. Metabolic detoxification of plant prooxidants. Pp. 181–209 in S. Ahmad (Ed.), Oxidative Stress and Antioxidant Defense in Biology. Routledge, Chapman Hall, New York.CrossRefGoogle Scholar
  11. Berenbaum, M. R. and A. R. Zangerl. 1992a. Genetics of secondary metabolism and herbivore resistance in plants. Pp. 415–438 in G. Rosenthal and M. Berenbaum, (Eds.), Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 2, 2nd ed. Academic Press, San Diego, CA.Google Scholar
  12. Berenbaum, M. R. and A. R. Zangerl. 1992b. Genetics of physiological and behavioral re- sistance to host furanocoumarins in the parsnip webworm. Evolution 46: 1373–1384.CrossRefGoogle Scholar
  13. Berenbaum, M. R. and A. R. Zangerl. 1993. Furanocoumarin metabolism in Papilio polyxenes: Genetic variability, biochemistry, and ecological significance. Oecologia 95: 370–375.CrossRefGoogle Scholar
  14. Berenbaum, M. R., A. R. Zangerl, and K. Lee. 1989. Chemical barriers to adaptation by a specialist herbivore. Oecologia 80: 501–506.CrossRefGoogle Scholar
  15. Bernays, E. and M. Graham. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.CrossRefGoogle Scholar
  16. Bertilsson, L. 1995. Geographical/interracial differences in polymorphic drug oxidation. Clin. Pharmcokinet. 29: 192–209.CrossRefGoogle Scholar
  17. Bossait, J. L. 1993. Differential selection and adaptation in different host environments: Genotypic and phenotypic variation in host use traits in the tiger swallowtail butterfly, Papilio glaucus (Laws.). Ph.D. dissertation, Michigan State University, East Lansing, MI.Google Scholar
  18. Bossait, J. L. and J. M. Scriber. 1995a. Genetic variation in oviposition preference in tiger swallowtail butterflies: Interspecific, interpopulation and interindividual comparisons. Pp. 183–193 in J. M. Scriber, Y. Tsubaki, and R.C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.Google Scholar
  19. Brausten, L. B. 1992. Metabolic defenses against plant allelochemicals. Pp. 175–242 in G. Rosenthal and M. Berenbaum (Eds.) Herbivores: Their Interactions with Secondary Plant MetabolitesVol. 2. Academic Press, San Diego, CA. Google Scholar
  20. Carroll, S. P. and C. Boyd. 1992. Host race radiation in the soapberry bug: Natural history with the history. Evolution 46: 1052–1069.CrossRefGoogle Scholar
  21. Chapman, R. 1982. The Insects: Structure and Function. Elsevier, New York.Google Scholar
  22. Cohen, M. R., M. R. Berenbaum, and M. A. Schuler. 1989. Induction of cytochrome P450-mediated detoxification in the black swallowtail. J. Chem. Ecol. 15: 2347–2355.CrossRefGoogle Scholar
  23. Cohen, M. B., J. F. Koener, and R. Feyereisen. 1994. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the housefly. Gene 146: 267–272.PubMedCrossRefGoogle Scholar
  24. Cohen, M. B., M. A. Schuler, and M. R. Berenbaum. 1992. A host-inducible cytochrome P450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 89: 10920–10924.PubMedCrossRefGoogle Scholar
  25. Devonshire, A. L. and L. M. Field. 1991. Gene amplification and insecticide resistance. Annu. Rev. Entomol. 36: 1–23.PubMedCrossRefGoogle Scholar
  26. Dreyer, D. L. 1969. Coumarins and alkaloids of the genus Ptelea. Phytochem. 8: 1013–1020.CrossRefGoogle Scholar
  27. Ehrlich, P. R. and P. R. Raven. 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  28. Feder, J. L., T. A. Hunt, and G. L. Bush. 1990. The effect of climate, host plant phenology, and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella. Entomol. Exp. Appl. 69: 117–135.CrossRefGoogle Scholar
  29. Fernandez-Salguero, P., S. M. G. Hoffman, S. Cholerton, H. Mohrenweiser, H. Raunio, A. Rautio, O. Pelkonen, J.-D. Huang, W. E. Evans, J. R. Idle, and F. J. Gonzalez. 1995. A genetic polymorphism in coumarin 7-hydroxylation: Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 57: 651–660.PubMedGoogle Scholar
  30. Feyereisen, R. 1995. Molecular biology of insecticide resistance. Tox. Lett. 82/83: 83–90.Google Scholar
  31. Feyereisen, R., J. F. Andersen, F. A. Carino, M. B. Cohen, and J. F. Koener. 1995. Cytochrome P450 in the housefly: Structure, catalytic activity, and regulation of expression in an insecticide-resistant strain. J. Pestic. Sci. 43: 233–239.CrossRefGoogle Scholar
  32. Gaedigk, A., M. Blum, R. Gaedigk, M. Eichelbaum, and U. A. Meyer. 1991. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am. J. Hum. Genet. 48: 943–950.PubMedGoogle Scholar
  33. Goldstein, J. A. and S. M. F. de Morais. 1994. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 285–299.PubMedCrossRefGoogle Scholar
  34. Gonzalez, F. J. and D. W. Nebert. 1990. Evolution of the P450 gene superfamily. Trends in Genetics 6: 182–186.PubMedCrossRefGoogle Scholar
  35. Guengerich, F R. 1994. Catalytic selectivity of human cytochrome P450 enzymes: Relevance to drug metabolism and toxicity. Tox. Lett. 70: 133–138.CrossRefGoogle Scholar
  36. Hallstrom, I. 1987. Genetic variation in cytochrome P450-dependent demethylation in Drosophila melanogaster. Biochem. Pharmacol. 36: 2279–2282.CrossRefGoogle Scholar
  37. Hallstrom, I. and R. Grafstrom. 1981. The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster: II. Enzyme induction and metabolism of benzo[a]pyrene. Chem.-Biol. Interactions 34: 145–159.CrossRefGoogle Scholar
  38. Hammock, B. D., S. M. Mumby, and R. W. Lee. 1977. Mechanisms of resistance to the juvenoid methoprene in the housefly Musca domestica (Laws.). Pestic. Biochem. Physiol. 7: 261–272.CrossRefGoogle Scholar
  39. Hedrick, R. W. and J. F. McDonald. 1980. Regulatory gene adaptation: An evolutionary model. Heredity 45: 83–97.PubMedCrossRefGoogle Scholar
  40. Hegnauer, R. 1966–1973. Chemotaxonomie der Pflanzen. Birkhauser Verlag, Basel, France.Google Scholar
  41. Heininger, E. 1989. Effects of furocoumarin and furoquinoline allelochemicals on host-plant utilization by Papilionidae. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.Google Scholar
  42. Hung, C. F. 1996. Isolation and characterization of cytochrome P450s from Papilio polyxenes and Papilio glaucus. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.Google Scholar
  43. Hung, C. E, H. Prapaipong, M. R. Berenbaum, and M. A. Schuler. 1995. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochem. Mol. Biol. 25: 89–99.CrossRefGoogle Scholar
  44. Johannson, I., E. Lundqvist, L. Bertilsson, M.-L. Dahl, F. Sjoqvist, and M. IngelmanSundberg. 1993. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. USA 90: 11825–11829.CrossRefGoogle Scholar
  45. Kimura, S., M. Umeno, R. C. Skoda, U. A. Meyer, and F. J. Gonzalez. 1989. The human debrisoquine 4—hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Gen. 45: 889–904.Google Scholar
  46. Krynetskii, E. Y. 1996. Polymorphism of drug-metabolizing enzymes: Gene structure and enzyme activity (a review). Molec. Biol. 30: 17–23.Google Scholar
  47. Kuhr, R. J. 1971. Comparative metabolism of carbaryl by resistant and susceptible strains of the cabbage looper. J. Econ. Entomol. 64: 1373–1378.PubMedGoogle Scholar
  48. Liu, N, T. Tornita, and J. G. Scott. 1995. Allele-specific PCR reveals that CYP6D1 is on chromosome 1 in the housefly, Musca domestica. Experientia 51:164–167.Google Scholar
  49. London, S. J., A. K. Daly, J. Cooper, C. L. Carpenter, W. C. Navidi, L. Ding, and J. R. Idle. 1996. Lung cancer risk in relation to the CYP2E1 RsaI genetic polymorphism among African-Americans and Caucasians in Los Angeles County. Pharmacogenetics 6: 151–158.PubMedCrossRefGoogle Scholar
  50. Ma, R., M. B. Cohen, M. R. Berenbaum, and M.A. Schuler. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch. Biochem. Biophys. 310: 332–340.PubMedCrossRefGoogle Scholar
  51. Matsumura, F. 1975. Toxicology of Insecticides. Plenum Press, New York.CrossRefGoogle Scholar
  52. Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.PubMedCrossRefGoogle Scholar
  53. Murray, R. D. H., J. Mendez, and S. A. Brown. 1982. The Natural Coumarins: Occurence, Chemistry, and Biochemistry. John Wiley, New York.Google Scholar
  54. Neal, J. J. 1987. Ecological aspects of insect detoxication enzymes and their interaction with plant allelochemicals. Ph.D. dissertation, University of Illinois at Urbana—Champaign, IL.Google Scholar
  55. Nelson, D, T. Kamataki, D. J. Waxman, F.P. Guengerich, R. W. Estabrook, R. Feyereisen, E J. Gonzalez, M. J. Coon, I. C. Gunsalus, O. Gotoh, K. Okuda, and D. W. Nebert. 1993. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1–51.PubMedCrossRefGoogle Scholar
  56. Oppenorth, F. J. 1984. Biochemistry of insecticide resistance. Pestic. Biochem. Physiol. 22: 187–193.CrossRefGoogle Scholar
  57. Pashley, D. P. 1988. Quantitative genetics, development, and physiological adaptation in host strains of fall annyworm. Evolution 42: 93–102.CrossRefGoogle Scholar
  58. Plapp, F. W. Jr. and J. E. Casida. 1969. Genetic control of housefly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance. J. Econ. Entomol. 62: 1174–1179.PubMedGoogle Scholar
  59. Rosenthal, G. and M. R. Berenbaum. 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, San Diego, CA.Google Scholar
  60. Schonbrod, R. D., M. A. Q. Khan, L. C. Terriere, and F. W. Plapp Jr. 1968. Microsomal oxidases in the housefly: A survey of fourteen strains. Life Sciences 7: 681–688.CrossRefGoogle Scholar
  61. Scott, J. G. 1996. Cytochrome P450 monooxygenase-mediated resistance to insecticides. J. Pestic. Sci. 21: 241–245.CrossRefGoogle Scholar
  62. Scriber, J. M. 1986. Origins of the regional feeding abilities in the tiger swallowtail butterfly: Ecological monophagy and the Papilio glaucus australis subspecies in Florida. 0ecologia 71: 94–103.CrossRefGoogle Scholar
  63. Scriber, J. M. 1988. Tale of the tiger: Beringial biogeography, binomial classification, and breakfast choices in the Papilio glaucus complex of butterflies. Pp. 241–301 in K. C. Spencer (Ed.), Chemical Mediation of Coevolution. Academic Press, New York.Google Scholar
  64. Scriber, J. M. 1995. Overview of swallowtail butterflies: Taxonomic and distributional latitude. Pp. 3–8 in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.Google Scholar
  65. Scriber, J. M. and S. H. Gage. 1995. Pollution and global climate change: Plant ecotones, butterfly hybrid zones and changes in biodiversity. Pp. 319–344 in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (Eds.), Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishing, Gainesville, FL.Google Scholar
  66. Skoda, R. C., F. J. Gonzalez, A. Demierre, and U. A. Meyer. 1988. Two mutant alleles of the human cytochrome P-450db I gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Natl. Acad. Sci. USA 85: 5240–5243.PubMedCrossRefGoogle Scholar
  67. Tallamy, D., 1986. Behavioral adaptations in insects to plant allelochemicals. Pp. 273–300 in L. B. Brattsten and S. Ahmad (Eds.), Molecular Aspects of Insect–Plant Associations. Plenum Press, New York.CrossRefGoogle Scholar
  68. Terriere, L. C. 1968. The oxidation of pesticide: The comparative approach. Pp. 175–196 in E. Hodgson (Ed.), The Enzymatic Oxidation of Toxicants. North Carolina State University Press, Raleigh, NC.Google Scholar
  69. Tomita, T. and J. G. Scott. 1995. cDNA and deduced protein sequence of CYP6D1—the putative gene for a cytochrome P450 responsible for pyrethroid resistance in a housefly. Insect Biochem. Mol. Biol. 25: 275–283.Google Scholar
  70. Via, S. 1991. Specialized host plant performance of pea aphid clones is not altered by experience. Ecology 72: 1420–1427.CrossRefGoogle Scholar
  71. Walsh, J. B. 1995. How often do duplicated genes evolve new functions? Genetics 139: 421–428.PubMedGoogle Scholar
  72. Zangerl, A. R. and M. R. Berenbaum. 1993. Plant chemistry and insect adaptations to plant chemistry as determinants of hostplant utilization patterns. Ecology 74: 47–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • May R. Berenbaum
    • 1
  • Arthur R. Zangerl
    • 1
  1. 1.Department of EntomologyUniversity of IllinoisUrbanaUSA

Personalised recommendations