Differential Adaptation in Spacially Heterogeneous Environments and Host-Parasite Coevolution

  • Sylvain Gandon
  • Dieter Ebert
  • Isabelle Olivieri
  • Yannis Michalakis


The terms adaptive deme formation and local adaptation have been used in the plant-herbivore and host-parasite literature, respectively, to designate one of the following two situations. The first one is when the mean fitness of a population (or deme) is on average larger in the environment this population originated from than in other environments. The second situation is when the mean fitness of a population on its natal environment is on average larger than the mean fitness of populations issued from other environments. We will use the term local adaptation to designate the situation when both conditions are satisfied, though this is not always the case. This definition emphasizes the potential differential response of populations with respect to their natal versus nonnatal environments, a phenomenon that should not be restricted to biotic interactions only.


Dispersal Rate Natural Enemy Sexual Reproduction Local Adaptation Host Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balkau, B. J. and M. W. Feldman. 1973. Selection for migration modification. Genetics 74: 171–174.PubMedGoogle Scholar
  2. Bell, G. 1982. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley, CA.Google Scholar
  3. Bennett, A. F., R. A. Lenski, and J. E. Mittler. 1992. Evolutionary adaptation to temperature: I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution 46: 16–30.CrossRefGoogle Scholar
  4. Bernays, E. A. and R. F. Chapman. 1994. Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York.Google Scholar
  5. Brown, J. K. M. 1994. Chance and selection in the evolution of barley mildew. Trends Microbiol. 2: 470–475.PubMedCrossRefGoogle Scholar
  6. Burt, A. and G. Bell. 1991. Seed reproduction is associated with transient escape from parasite damage in American beech. Oikos 61: 145–148.CrossRefGoogle Scholar
  7. Cobb, N. S. and T. G. Whitham. 1993. Herbivore deme formation on individual trees: A test case. Oecologia 94: 496–502.CrossRefGoogle Scholar
  8. Comins, H. N., W. D. Hamilton, and R. M. May. 1980. Evolutionary stable dispersal strategies. J. Theor. Biol. 82: 205–230.PubMedCrossRefGoogle Scholar
  9. de Meeûs, T., M. E. Hochberg, and F. Renaud. 1994. Maintenance of two genetic entities by habitat selection. Evol. Ecol. 8: 1–8.CrossRefGoogle Scholar
  10. Denno, R. F. 1994. The evolution of dispersal polymorphisms in insects: The influence of habitat, host plants and mates. Res. Pop. Ecol. 36: 127–135.CrossRefGoogle Scholar
  11. Dias, P. C. 1996. Sources and sinks in population biology. Trends Ecol. Evol. 11: 326–330.PubMedCrossRefGoogle Scholar
  12. Ebert, D. 1994. Virulence and local adaptation of a horizontally transmitted parasite. Science 265: 1084–1086.PubMedCrossRefGoogle Scholar
  13. Ebert, D. 1995. The ecological interactions between a microsporidian parasite and its host Daphnia magna. J. Anim. Ecol. 64: 361–369.CrossRefGoogle Scholar
  14. Ebert, D. and W. D. Hamilton. 1996. Sex against virulence: The coevolution of parasitic diseases. Trends in Ecology and Evolution 11: 79–82.PubMedCrossRefGoogle Scholar
  15. Edmunds, G. F. J. and D. N. Alstad. 1978. Coevolution in insects herbivore and conifers. Science 199: 941–945.PubMedCrossRefGoogle Scholar
  16. Frank, S. A. 1986. Dispersal polymorphisms in subdivided populations. J. Theor. Biol. 122: 303–309.PubMedCrossRefGoogle Scholar
  17. Frank, S. A. 1993. Evolution of host-parasite diversity. Evolution 47: 1721–1732.CrossRefGoogle Scholar
  18. Frank, S. A. 1994. Kin selection and virulence in the evolution of protocells and parasites. Proc. R. Soc. Lond. B. 258: 153–161.CrossRefGoogle Scholar
  19. Gandon, S., Y. Capowiez, Y. Dubois. Y. Michalakis. and I. Olivieri. 1996a. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc. Roy. Soc. Lond. B., 263: 1003–1009.CrossRefGoogle Scholar
  20. Gandon, S., Y. Michalakis, and D. Ebert. 1996b. Metapopulations and local adaptation in host-parasite interactions. Trends Ecol. Evol., 11: 431.PubMedCrossRefGoogle Scholar
  21. Differential Adaptation in Heterogeneous Environments and Host-Parasite Coevolution/341Google Scholar
  22. Hamilton, W. D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290.CrossRefGoogle Scholar
  23. Hamilton, W. D., R. Axelrod, and R. Tanese. 1990. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl. Acad. Sci. USA 87: 3566–3573.PubMedCrossRefGoogle Scholar
  24. Hamilton, W. D. and R. M. May. 1977. Dispersal in stable habitats. Nature 269: 578–581.CrossRefGoogle Scholar
  25. Hastings, A. 1983. Can spatial selection alone lead to selection for dispersal? Theor. Pop. Biol. 24: 244 251.Google Scholar
  26. Hochberg, M. E. 1991. Intra-host interactions between a braconid endoparasitoid, Apanteles glomeratus, and a baculovirus for larvae of Pieris brassicae. J. Anim. Ecol. 60: 51–63.CrossRefGoogle Scholar
  27. Holt, R. D. 1985. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Pop. Biol. 28: 181–208.CrossRefGoogle Scholar
  28. Hunter, M. D. and R. W. Price. 1992. Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73 (3): 724–732.Google Scholar
  29. Ishii, K., H. Matsuda,Y. Iwasa, and A. Sasaki. 1989. Evolutionary stable mutation rate in a periodically changing environment. Genetics 121: 163–174.Google Scholar
  30. Jaenike, J. 1978. An hypothesis to account for the maintenance of sex within populations. Evol. Theory 3: 191–194.Google Scholar
  31. Johnson, M. L. and M. S. Gaines. 1990. Evolution of dispersal: Theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecol. Syst. 21: 449–480.CrossRefGoogle Scholar
  32. Judson, O. P. 1995. Preserving genes: A model of the maintenance of genetic variation in a metapopulation under frequency-dependent selection. Genet. Res. Carob. 65: 175–191.CrossRefGoogle Scholar
  33. Karban, R. 1989. Fine-scale adaptation of herbivorous thrips to individual host plants. Nature 340: 60–61.CrossRefGoogle Scholar
  34. Kearsley, M. C. and T. G. Whitham. 1989. Developmental changes in resistance to herbivory: Implications for individuals and populations. Ecology 70: 422–434.CrossRefGoogle Scholar
  35. Ladle, R. J. 1992. Parasites and sex: Catching the Red Queen. Trends Ecol. Evol. 7: 405–408.PubMedCrossRefGoogle Scholar
  36. Ladle, R. J., R. A. Johnstone, and O. R. Judson. 1993. Coevolutionary dynamics of sex in a metapopulation: Escaping the Red Queen. Proc. Roy. Soc. Lond. B. 253: 155–160.CrossRefGoogle Scholar
  37. Levin, S. A., D. Cohen, and A. Hastings. 1984. Dispersal strategies in patchy environments. Theor. Pop. Biol. 26: 165–191.CrossRefGoogle Scholar
  38. Levin, B. R. and C. Svandborg Eden. 1990. Selection and evolution of virulence in bacte- ria: An ecumenical excursion and modest suggestion. Parasitology 100: S103 - S115.PubMedCrossRefGoogle Scholar
  39. Lively, C. M. 1987. Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519–521.CrossRefGoogle Scholar
  40. Lively, C. M. 1989. Adaptation by a parasitic trematode to local populations of its snail host. Evolution 43 (8): 1663–1671.CrossRefGoogle Scholar
  41. Lively, C. M. 1992. Parthenogenesis in a freshwater snail: Reproductive assurance versus parasitic release. Evolution 46 (4): 907–913.CrossRefGoogle Scholar
  42. Lively, C. M., C. Craddock, and R. C. Vrijenhoek. 1990. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344: 864–866.CrossRefGoogle Scholar
  43. Lively, C. M. and J. Jokela. 1996. Clinal variation for local adaptation in a host-parasite interaction. Proc. R. Soc. Lond. B. 263: 891–897.CrossRefGoogle Scholar
  44. Maynard Smith, J. 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge.Google Scholar
  45. Maynard Smith, J. 1980. Selection for recombination in a polygenic model. Genet. Res. Camb. 35: 269–277.CrossRefGoogle Scholar
  46. McPeek, M. A. and R. D. Holt. 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140: 1010–1027.CrossRefGoogle Scholar
  47. Miller, R. A. 1996. The aging immune system: Primer and prospectus. Science 273: 70–74.PubMedCrossRefGoogle Scholar
  48. Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.PubMedCrossRefGoogle Scholar
  49. Mopper, S., M. Beck, D. Simberloff, and P. Stiling. 1995. Local adaptation and agents of selection in a mobile insects. Evolution 49 (5): 810–815.CrossRefGoogle Scholar
  50. Morritz, C., H. McCallum, S. Donnelan, and J. D. Roberts. 1991. Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): Support for the Red Queen hypothesis. Proc. R. Soc. Lond. B. 244: 145–149.CrossRefGoogle Scholar
  51. Olivieri, I., Y. Michalakis, and P.-H. Gouyon. 1995. Metapopulation genetics and the evolution of dispersal. Am. Nat. 146: 202–228.CrossRefGoogle Scholar
  52. Parker, M. A. 1985. Local population differentiation for compatibility in an annual legume and its host-specific fungal-pathogen. Evolution 39 (4): 713–723.CrossRefGoogle Scholar
  53. Pulliam, H. R. 1988. Sources, sinks, and population regulation. Am. Nat. 132: 652–661.CrossRefGoogle Scholar
  54. Pulliam, H. R. and B. J. Danielson. 1991. Sources, sinks, and habitat selection: A landscape perspective on population dynamics. Am. Nat. 137: S50 - S66.CrossRefGoogle Scholar
  55. Rice, W. R. 1983. Sexual reproduction: An adaptation reducing parent-offspring contagion. Evolution 37: 1317–1320.CrossRefGoogle Scholar
  56. Shields, W. M. 1982. Philopatry, Inbreeding, and the Evolution of Sex. State University New York Press, NY.Google Scholar
  57. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.PubMedCrossRefGoogle Scholar
  58. Unruh, T. R. and R. F. Luck. 1987. Deme formation in scale insects: A test with the pinyon needle scale and a review of other evidence. Ecol. Entomol. /2: 439–449.Google Scholar
  59. van Valen, L. 1973. A new evolutionary law. Evol. Theory 1: 1–30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Sylvain Gandon
    • 1
  • Dieter Ebert
    • 2
  • Isabelle Olivieri
    • 3
  • Yannis Michalakis
    • 4
  1. 1.Laboratorire d’EcologieUniversite Pierre et Marie CurieParisFrance
  2. 2.Zoologishes InstitutUniversitat BaselBaselSwitzerland
  3. 3.Lab Genetique et Environnement, Institut des Sciences de l’EvolutionUniversite Montpellier IIMontpellierFrance
  4. 4.Laboratorire d’EcologieUniversite Pierre et Marie CurieParisFrance

Personalised recommendations