Social Behavior and Its Effects on Colony- and Microgeographic Genetic Structure in Phytophagous Insect Populations

  • James T. Costa


Population genetic structure is defined in terms of deviation from panmixis, or random mating, and explicitly refers to nonrandom spatial association of alleles. Nonrandom associations may arise in several ways as a natural consequence of the interplay among behavioral, ecological, and biogeographic factors. At large (macrogeographic) spatial scales, genetic differences between subpopulations may be maintained by natural selection or result from genetic drift associated with isolation by distance and attenuated gene flow. The causes of microgeographic structure—here defined as structure at the spatial scale of individual host plants and localized host plant groups—are more varied. Spatial genotypic association could arise from the joint effects of reproductive output and dispersal whereby physical association is the outcome of environmental constraints such as predation pressure and lack of suitable habitat. On the other hand, behaviors promoting association of related individuals can also produce highly patchy, localized units of genetic structure.


Social Insect Mating Frequency Colony Founding Local Population Density Population Genetic Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackery, P. R. and R. I. Vane-Wright. 1984. Milkweed Butterflies: Their Cladistics and Biology. Comstock Publishing Associates, Ithaca, NY.Google Scholar
  2. Akimoto, S. 1981. Gall formation by Eriosoma fondatrices and gall parasitism in Eriosoma yangi (Homoptera, Pemphigidae). Kontyû 49: 426–436.Google Scholar
  3. Ananthakrishnan, T. N. 1979. Biosystematics of Thysanoptera. Annu. Rev. Entomol. 24: 159–183.Google Scholar
  4. Aoki, S. 1975. Descriptions of the Japanese species of Pemphigus and its allied genera (Homoptera: Aphidoidea). Lnsecta Matsumurama, New Series 5: 1–61.Google Scholar
  5. Aoki, S. 1977. Colophina clematis (Homoptera: Pemphigidae), an aphid species with “soldiers.” Kontyû 45: 276–282.Google Scholar
  6. Aoki, S. 1979. Dimorphic first instar larvae produced by the fundatrix of Pachypappa marsupialis (Homoptera, Aphidoidea). Kontyû 47: 390–398.Google Scholar
  7. Aoki, S. 1987. Evolution of sterile soldiers in aphids. Pages 53–65 in Y. Ito, J. L. Brown and J. Kikkawa (Eds.), Animal Societies: Theories and Facts. Japanese Scientific Socity Press, Tokyo, Japan.Google Scholar
  8. Aoki, S. and U. Kurosu. 1992. No attack on conspecifics by soldiers of the gall aphid Ceratoglyphina bambusae (Homoptera) late in the season. Japanese J. Entomol 60: 707–713.Google Scholar
  9. Aoki, S., U. Kurosu, and D. Stern. 1991. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Anim. Behay. 42: 865–866.Google Scholar
  10. Aoki, S. and S. Makino. 1982. Gall usurpation and lethal fighting among fundatrices of the aphid Epipemphigus niisimae (Homoptera: Pemphigidae). Kyontû 50: 365–376.Google Scholar
  11. Avise, J. C. 1994. Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York.Google Scholar
  12. Batra, S. W. T. 1966. Nests and social behavior of halictine bees of India (Hymenoptera: Halictidae). Indian J. Entomol. 28: 375–393.Google Scholar
  13. Benjamin, D. M. 1955. The biology and ecology of the red-headed pine sawfly. USDA Forest Service Technical Bulletin No. 1118.Google Scholar
  14. Benson, R. B. 1950. An introduction to the natural history of British sawflies. Trans. Soc. Brit. Entomol. 10: 45–142.Google Scholar
  15. Benson, W. W., K. S. Brown, and L. E. Gilbert. 1976. Coevolution of plants and herbivores: Passionflower butterflies. Evolution 29: 659–680.Google Scholar
  16. Carlin, N. F., D. S. Gladstein, A. J. Berry, and N. E. Pierce. 1994. Absence of kin discrimination behavior in a soldier-producing aphid, Ceratovacuna japonica (Hemiptera: Pemphigidae; Cerataphidini). J. NY Entomol. Soc. 102: 287–298.Google Scholar
  17. Carne, P. B. 1962. The characteristics and behaviour of the saw-fly Perga affinis affinis (Hymenoptera). Aust. J. Zool. 10: 1–38.Google Scholar
  18. Codella, S. G. and K. F. Raffa. 1995. Contributions of female oviposition patterns and larval behavior to group defense in conifer sawflies (Hymenoptera: Diprionidae). Oecologia 103: 24–33.Google Scholar
  19. Coppel, H. C. and D. M. Benjamin. 1965. Bionomics of the Nearctic pine-feeding diprionids. Annu. Rev. Entomol. 10: 69–96.Google Scholar
  20. Costa, J. T. and T. D. Fitzgerald. 1996. Developments in social terminology: Semantic battles in a conceptual war. Trends Ecol. Evol. 11: 285–289.PubMedGoogle Scholar
  21. Costa, J. T. and N. E. Pierce. 1997. Social evolution in the Lepidoptera: Ecological context and communication in larval societies. Pp. 407 IH12 in J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK.Google Scholar
  22. Costa, J. T. and K. G. Ross. 1993. Seasonal decline in intracolony genetic relatedness in eastern tent caterpillars: Implications for social evolution. Behay. Ecol. Sociobiol. 32: 47–54.Google Scholar
  23. Costa, J. T. and K. G. Ross. 1994. Hierarchical genetic structure and gene flow in macro-geographic populations of the eastern tent caterpillar (Malacosoma americanum). Evolution 48: 1158–1167.Google Scholar
  24. Craig, T. M., and S. Mopper. 1993. Sex ratio variation in sawflies. Pp. 61–92 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.Google Scholar
  25. Craig, T. P., P. W. Price, and J. K. Itami. 1992. Facultative sex ratio shifts by a herbivorous insect in response to variation in host plant quality. Oecologia 92: 153–161.Google Scholar
  26. Crespi, B. J. 1986a. Territoriality and fighting in a colonial thrips, Hoplothrips pedicularis, and sexual dimorphism in Thysanoptera. Ecol. Entomol. 11: 119–130.Google Scholar
  27. Crespi, B. J. 1986b. Size assessment and alternative fighting tactics in Elaphrothrips tuberculatus, (Insecta: Thysanoptera). Anim. Behay. 34: 1324–1335.Google Scholar
  28. Crespi, B. J. 1988. Risks and benefits of lethal male fighting in the polygynous, colonial thrips Hopolothrips karnyi. Behay. Ecol. Sociobiol. 22: 293–301.Google Scholar
  29. Crespi, B. J. 1992a. Eusociality in Australian gall thrips. Nature 359: 724–726.Google Scholar
  30. Crespi, B. J. 1992b. Behavioural ecology of Australian gall thrips (Insecta, Hysanoptera). J. Nat. Hist. 26: 769–809.Google Scholar
  31. Crespi, B. J. and J. C. Choe (Eds.). 1997. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK.Google Scholar
  32. Crespi, B. J., and L. A. Mound. 1997. Ecology and evolution of social behavior among Australian gall thrips and their allies. In J.C. Choe and B.J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK. Pp. 166–180.Google Scholar
  33. Crespi, B. J. and D. Yanega. 1995. The definition of eusociality. Behay. Ecol. 6: 109–115.Google Scholar
  34. Crozier, R. H., P. Pamilo, and Y. C. Crozier. 1984. Relatedness and microgeographic genetic variation in Rhytidoponera mayri, an Australian and-zone ant. Behay. Ecol. Sociobiol. 15: 143–150.Google Scholar
  35. Darwin, C. R. 1859. On the Origin of Species by Means of Natural Selection. J. Murray, London.Google Scholar
  36. Dias, B. F. de S. 1975. Comportamento pre-social de sinfitas do Brasil Central. I. Themos olfersii (Klug) (Hymenoptera: Argidae). Stud. Entomol. 18: 401–432.Google Scholar
  37. Dias, B. F. de S. 1976. Comportamento pre-social de sinfitas do Brasil Central. II. Dielocerus diasi Smith (Hymenoptera: Argidae). Stud. Entomol. 19: 461–501.Google Scholar
  38. Dixon, A. F. G. 1985. Aphid Ecology. Mackie and Son, Ltd., Glasgow, Scotland.Google Scholar
  39. Eanes, W. F. and R. K. Koehn. 1978. An analysis of genetic structure in the monarch butterfly, Danaus plexippus L. Evolution 32: 784–797.Google Scholar
  40. Eastop, V. F. 1977. Worldwide importance of aphids as virus vectors. Pp. 3–62 in K. F. Har- ris and K. Maramorosch (Eds.), Aphids as Virus Vectors. Academic Press, New York.Google Scholar
  41. Edmunds, G. F. and D. N. Alstad. 1978. Coevolution in insect herbivores and conifers. Science 199: 941–945.PubMedGoogle Scholar
  42. Edmunds, G. F. and D. N. Alstad. 1981. Responses of black pineleaf scales to hostplant variability. Pp. 29–38 in R. Denno and H. Dingle (Eds.), Insect Life History Patterns. Springer-Verlag, New York.Google Scholar
  43. Ehrlich, A. H. and P. R. Ehrlich. 1978. Reproductive strategies in the butterflies: I. Mating frequency, plugging, and egg number. J. Kansas Entomol. Soc. 51: 666–697.Google Scholar
  44. Eickwort, G. C. 1981. Presocial insects. Pp. 199–280 in H. R. Hermann (Ed.), Social Insects, Vol II. Academic Press, New York.Google Scholar
  45. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Claredon Press, Oxford, UK.Google Scholar
  46. Fitzgerald, T. D. 1993. Sociality in caterpillars. Pp. 372–403 in N. E. Stamp and T. M. (Eds.), Casey Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York.Google Scholar
  47. Fitzgerald, T. D. 1995. The Tent Caterpillars. Cornell University Press, Ithaca, NY.Google Scholar
  48. Fitzgerald, T. D. and D. E. Miller. 1983. Tent building behavior of the eastern tent caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). Journal of the Kansas Entomological Society 56: 20–31.Google Scholar
  49. Fitzgerald, T. D. and S. C. Peterson. 1983. Elective recruitment communication by the eastern tent caterpillar (Malacosoma americanum). Anim. Behay. 31: 417 142.Google Scholar
  50. Fitzgerald, T. D. and S. C. Peterson. 1988. Cooperative foraging and communication in caterpillars. BioScience 38: 20–25.Google Scholar
  51. Foster, W. A. 1990. Experimental evidence for effective and altruistic colony defense against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae). Behay. Ecol. Sociobiol. 27: 421–430.Google Scholar
  52. Foster, W. A. 1996. Duelling aphids: Intraspecific fighting in Astegopteryx minuta (Homoptera: Hormaphididae). Anim. Behay. 51: 645–655.Google Scholar
  53. Gadagkar, R. 1994. Why the definition of eusociality is not helpful to understand its evolution and what should we do about it. Oikos 70: 485–487.Google Scholar
  54. Gilbert, L. E. and M. C. Singer. 1973. Dispersal and gene flow in a butterfly species. Am. Nat. 107: 58–72.Google Scholar
  55. Grafen, A. 1984. Natural selection, kin selection, and group selection. Pp. 62–84 in J. R. Krebs and N. B. Davies (Eds.), Behavioral Ecology: An Evolutionary Approach. Sinauer Associates, Sunderland, MA.Google Scholar
  56. Hagen, R. H. 1990. Population structure and host use in hybridizing subspecies of Papilio glaucus (Lepidoptera: Papilionidae). Evolution 44: 1914–1930.Google Scholar
  57. Haldane, J. B. S. 1932. The Causes of Evolution. Longmans, Green, New York.Google Scholar
  58. Hamilton, W. D. 1964. The genetical evolution of social behaviour. I and II. J. Theor. Biol. 7: 1–52.PubMedGoogle Scholar
  59. Hamilton, W. D. 1967. Extraordinary sex ratios. Science /56:477–488.Google Scholar
  60. Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects. Arrau. Rev. Ecol. Svst. 3: 193–232.Google Scholar
  61. Hardy, A. C. and L. Cheng. 1986. Studies in the distribution of insects by aerial currents: III. Insect drift over the sea. Ecol. Entomol. 11: 283–290.Google Scholar
  62. Hill, D. S., P. M. Hore, and I. W. B. Thorton. 1982. Insects of Hong Kong. Hong Kong University Press, Hong Kong.Google Scholar
  63. Itô, Y. 1989. The evolutionary biology of sterile soldiers in aphids. Trends Ecol. Evol. 4: 69–73.Google Scholar
  64. Jewett, D. M., F. Matsumura, and H. C. Coppel. 1976. Sex pheromone specificity in the pine sawflies: Interchange of acid moieties in an ester. Science 192: 51–53.PubMedGoogle Scholar
  65. Johnson, W. T. and H. H. Lyon. 1988. Insects That Feed on Trees and Shrubs. Cornell University Press, Ithaca, NY.Google Scholar
  66. Karban, R. 1989. Fine-scale adaptation of herbivorous thrips to individual host plants. Nature 340: 60–61.Google Scholar
  67. Laidlaw, H. H. Jr. and R. E. Page Jr. 1984. Polyandry in honey bees (Apis mellifera L.): Sperm utilization and intracolony genetic relationships. Genetics 108: 985–997.PubMedGoogle Scholar
  68. Lester, R. J. and R. K. Selander. 1981. Genetic relatedness and the social organization of Polistes. Am. Nat. 117: 147–166.Google Scholar
  69. Lewis, T. 1973. Thrips: Their Biology, Ecology, and Economic Importance. Academic Press, New York.Google Scholar
  70. Loxdale, H. D. 1990. Estimating levels of gene flow between natural populations of cereal aphids (Homoptera: Aphididae). Bull. Entomol. Res. 80: 331–338.Google Scholar
  71. Macdonald, J. and C. P. Ohmart. 1993. Life history strategies of Australian pergid sawflies and their interactions with hosts. Pp. 485–502 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.Google Scholar
  72. Maetô, K. and N. Yoshida. 1988. Characteristics of the oviposition of the red-headed spruce web-spinning sawfly, Cephalcia isshikii Takeuchi (Hymenoptera: Pamphiliidae). Appl. Entomol. Zool. 23: 361–362.Google Scholar
  73. Mallet, J. L. and D. A. Jackson. 1980. The ecology and social behaviour of the Neotropical butterfly Heliconiusxanthocles Bates in Colombia. Zool. J. Linn. Soc. 70: 1–13.Google Scholar
  74. Maynard Smith, J. 1976. Group selection. Quart. Rev. Biol. 51: 277–283.Google Scholar
  75. McCauley, D. E., M. J. Wade, F. J. Breden, and M. Wohltman. 1988. Spatial and temporal variation in group relatedness: Evidence from the imported willow leaf beetle. Evolution 42: 184–192.Google Scholar
  76. McKechnie, S. W., P. P. Ehrlich, and R. R. White. 1975. Population genetics of Euphydryas butterflies: I. Genetic variation and the neutral hypothesis. Genetics 81: 571–594.PubMedGoogle Scholar
  77. Menken, S. B. J., W. M. Herrebout, and J. T. Wiebes. 1992. Small ermine moths (Yponomeuta): Their host relations and evolution. Annu. Rev. Entomol. 37: 41–66.Google Scholar
  78. Michener, C. D. 1953. Problems in the development of social behavior and communication among insects. Trans. Kan. Acad. Sci. 56: 1–15.Google Scholar
  79. Michener, C. D. 1958. The evolution of social behavior in bees. Proc. 10th Int. Cong. Entomol. 2: 441–447.Google Scholar
  80. Michener, C. D. 1969. Comparative social behavior of bees. Annu. Rev. Entomol. 14: 299–342.Google Scholar
  81. Michod, R. E. 1982. The theory of kin selection. Annu. Rev. Ecol. Syst. 13: 23–55.Google Scholar
  82. Michod, R. E. and W. W. Anderson. 1979. Measures of genetic relationship and the concept of inclusive fitness. Am. Nat. 114: 637–647.Google Scholar
  83. Mitchell, E. R. 1979. Migration by Spodoptera exigua and S. frugiperda, North American style. Pp. 386–393 in R. L. Rabb and G. G. Kennedy (Eds.), Movement of Highly Mobile Insects. North Carolina State University Graphics, Raleigh. NC.Google Scholar
  84. Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.PubMedGoogle Scholar
  85. Mopper, S., M. Beck, D. Simberloff, and P. Stiling. 1995. Local adaptation and agents of selection in a mobile insect. Evolution 49: 810–815.Google Scholar
  86. Mopper, S. and T. G. Whitham. 1992. The plant stress paradox: Effects on pinyon sawfly fecundity and sex ratios. Ecology 73: 515–525.Google Scholar
  87. Moran, N. A. 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37: 321–348.Google Scholar
  88. Moran, N. A. 1993. Defenders in the North American aphid Pemphigus obesinymphae. Insectes Sociaux 40: 391–402.Google Scholar
  89. Morris, R. F. 1972. Fecundity and colony size in natural populations of Hyphantria cunea. Can. Entomol. 104: 399–409.Google Scholar
  90. Mound, L. A. 1970. Intragall variation in Brithothrips fuscus Moulton with notes on other Thysanoptera-induced galls on Acacia phyllodes in Australia. Entomol. Mon. Mag. 105: 159–162.Google Scholar
  91. Mound, L. A. 1971. Gall-forming and allied species (Thysanoptera: Phlaeothripidae) from Acacia trees in Australia. Bull. Brit. Mus. Nat. Hist. (Ent.) 25: 389–466.Google Scholar
  92. Mound, L. A. and B. J. Crespi. 1992. Two new species of Australian gall thrips from woody stem galls on Casuarina. J. Nat. Hist. 26: 395–406.Google Scholar
  93. Mound, L. A. and B. J. Crespi. 1995. Biosystematics of two new gall-inducing thrips with soldiers (Insecta: Thysanoptera) from Acacia trees in Australia. J. Nat. Hist. 29: 147–157.Google Scholar
  94. Nafus, D. M. and I. H. Schreiner. 1988. Parental care in a tropical nymphalid butterfly Hypolimnas anomala. Anim. Behan 36: 1425–1431.Google Scholar
  95. Otte, D. and J. A. Endler (Eds.). 1989. Speciation and its Consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  96. Page, R. E. 1986. Sperm utilization in social insects. Annu. Rev. Ent. 31: 297–320.Google Scholar
  97. Pamilo, P. 1982. Multiple mating in Formica ants. Hereditas 97: 37–45.Google Scholar
  98. Pamilo, P. 1983. Genetic differentiation within subdivided populations of Formica ants. Evolution 37: 1010–1022.Google Scholar
  99. Pamilo, P. 1984. Genotypic correlation and regression in social groups: Multiple alleles, multiple loci and subdivided populations. Genetics 107: 307–320.PubMedGoogle Scholar
  100. Pamilo, P. 1989. Estimating relatedness in social groups. Trends Ecol. Evol. 4:353–355. Pamilo, P. 1990. Comparison of relatedness estimators. Evolution 44:1378–1382.Google Scholar
  101. Pamilo, P. and R. H. Crozier. 1982. Measuring genetic relatedness in natural populations: Methodology. Theor. Pop. Biol. 21: 171–193.Google Scholar
  102. Parker, G. A. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev 45: 525–568.Google Scholar
  103. Pashley, D. P., S. J. Johnson, and A. N. Sparks. 1985. Genetic population structure of migratory moths: The fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78: 756–762.Google Scholar
  104. Pelikan, J. 1990. Butting in phlaeothripid larvae. Pp. 51–55 in J. Holman, J. Pelikan, A. F. G. Dixon, and L. Weisman (Eds.), Proceedings of the 3rd International Symposium on Thysanoptera. Kazmierz Dolny, Poland.Google Scholar
  105. Pliske, T. E. 1973. Factors determining mating frequencies in some New World butterflies and skippers. Ann. Entomol. Soc. Am. 66: 164–169.Google Scholar
  106. Queller, D. C. 1991. Group selection and kin selection. Trends Ecol. Evol. 6: 64.PubMedGoogle Scholar
  107. Queller, D. C. and K. F. Goodnight. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275.Google Scholar
  108. Queller, D. C., J. E. Strassmann, and C. R. Hughes. 1992. Genetic relatedness and population structure in primitively eusocial wasps in the genus Mischocyttarus (Hymenoptera: Vespidae). J. Hymen. Res. 1: 81–89.Google Scholar
  109. Raman, A. and T. N. Ananthakrishnan. 1984. Biology of gall thrips (Thysanoptera: Insecta). Pp. 107–127 in T. N. Ananthakrishnan (Ed.), Biology of Gall Insects. Oxford and IBH Publishing Co., New Delhi, India.Google Scholar
  110. Rausher, M. D. 1982. Population differentiation in Euphydryas editha butterflies: Larval adaptation to different hosts. Evolution 36: 581–590.Google Scholar
  111. Reilly, L. M. 1987. Measurements of inbreeding and average relatedness in a termite population. Am. Nat. 130: 339–349.Google Scholar
  112. Ross, K. G. 1986. Kin selection and the problem of sperm utilization in social insects. Nature 323: 798–800.Google Scholar
  113. Ross, K. G. 1993. The breeding system of the fire ant Solenopsis invicta: Effects on colony genetic structure. Am. Nat. 141: 554–576.PubMedGoogle Scholar
  114. Ross, K. G. and R. W. Matthews. 1989. Population genetic structure and social evolution in the sphecid wasp Microstigmus comes. Am. Nat. 134: 574–598.Google Scholar
  115. Ross, K. G., E. L. Vargo, and D. J. C. Fletcher. 1988. Colony genetic structure and queen mating frequency in fire ants of the subgenus Solenopsis (Hymenoptera: Formicidae). Biol. J. Lin. Soc. 34: 105–117.Google Scholar
  116. Sakata, K. and Y. Itô. 1991. Life history characteristics and behavior of the bamboo aphid, Pseudoregma bambucicola (Hemiptera: Pemphigidae), having sterile soldiers. Insectes Soc. 38: 317–326.Google Scholar
  117. Schultz, D. E. and D. C. Allen. 1975. Biology and descriptions of the cherry scallop moth Hydria prunivorata (Lepidoptera: Geometridae). Can. Entomol. 107: 99–106.Google Scholar
  118. Schwarz, M. P. 1986. Persistent multi-female nests in an Australian allodapine bee, Exoneura bicolor (Hymenoptera: Anthophoridae). Insectes Soc. 33: 258–277.Google Scholar
  119. Setzer, R. W. 1980. Intergall migration in the aphid genus Pemphigus. Ann. Entomol. Soc. Am. 73: 327–331.Google Scholar
  120. Sherman, P. W., E. A. Lacey, H. K. Reeve, and L. Keller. 1995. The eusociality continuum. Behay. Ecol. 6: 102–108.Google Scholar
  121. Shoemaker, D. D., J. T. Costa, and K. G. Ross. 1992. Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity 69: 573–582.Google Scholar
  122. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.Google Scholar
  123. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.PubMedGoogle Scholar
  124. Smith, D. R. 1993. Systematics, life history, and distribution of sawflies. Pp. 3–32 in M. Wagner and K. F. Raffa (Eds.), Sawfly Life History Adaptations to Woody Plants. Academic Press, San Diego, CA.Google Scholar
  125. Snyder, T. P. 1974. Lack of enzyme variability in three bee species. Evolution 28: 687–688.Google Scholar
  126. Stehr, F. W. and E. F. Cook. 1968. A revision of the genus Malacosoma Hübner in North America (Lepidoptera: Lasiocampidae): Systematics, biology, immatures, and parasites. Smithsonian Institution, United States National Museum Bulletin No. 276.Google Scholar
  127. Steiner, W. W. M., D. J. Voegtlin, and M. E. Irwin. 1985. Genetic differentiation and its bearing on migration in North American populations of the corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae). Ann. Entomol. Soc. Am. 78: 518–525.Google Scholar
  128. Stern, D. L. and W. A. Foster. 1996a. The evolution of soldiers in aphids. Biol. Rev. 71: 27–79.PubMedGoogle Scholar
  129. Stern, D. L. and W. A. Foster. 1997. The evolution of sociality in aphids: A clone-eye’s view. ln J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, Pp. 150–165.Google Scholar
  130. Strassmann, J. E., C. R. Hughes, D. C. Queller, S. Turillazzi, R. Cervo, S. K. Davis, and K. F. Goodnight. 1989. Genetic relatedness in primitively eusocial wasps. Nature 342: 268–269.Google Scholar
  131. Sugg, D. W., R. K. Chesser, F. S. Dobson, and J. L. Hoogland. 1996. Population genetics meets behavioral ecology. Trends Ecol. Evol. 11: 338–342.PubMedGoogle Scholar
  132. Taylor, L. R. 1974. Insect migration, flight periodicity, and the boundary layer. J. Anim. Ecol. 43: 225–238.Google Scholar
  133. Trivers, R. L. and H. Hare. 1976. Haplodiploidy and the evolution of social insects. Science 191: 249–263.PubMedGoogle Scholar
  134. Turner, J. R. G. 1971. Studies of Müllerian mimicry and its evolution in bullet moths and Heliconiid butterflies. Pages 224–260 in E. R. Creed (Ed.), Ecological Genetics and Evolution. Blackwell Scientific Publishing, Oxford, UK.Google Scholar
  135. Uyenoyama, M. K. 1984. Inbreeding and the evolution of altruism under kin selection: Effects on relatedness and group structure. Evolution 38: 778–795.Google Scholar
  136. Uyenoyama, M. K. and M. W. Feldman. 1980. Theories of kin and group selection: A population genetics perspective. Theor. Pop. Biol. 17: 380–414.Google Scholar
  137. van Leeuwen, W. J. D. 1956. The aetiology of some thrips galls found on Malaysian Scheffera. Acta Bot. Neerlandica 5: 80–89.Google Scholar
  138. Varadarasan, S. and T. N. Ananthakrishnan. 1982. Biological studies on some gall thrips. Proc. Indian Nat. Acad. Sci. B48 1: 35–43.Google Scholar
  139. Wade, M. J. 1985. Soft selection, hard selection, kin selection, and group selection. Am. Nat. 125: 61–73.Google Scholar
  140. Wade, M. J. and E. Breden. 1986. Life history of natural populations of the imported willow leaf beetle, Plagiodera versicolor (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 79: 73–79.Google Scholar
  141. Walter, G. H., K. Ruohomäki, E. Haukioja, and E. Vainio. 1994. Reproductive behaviour of mated and virgin females of a solitary sawfly Dineura virididorsata. Entomol. Exp. Appl. 70:83–90.Google Scholar
  142. Warren, L. O. and M. Tadic. 1970. The fall webworm, Hyphantria cunea ( Drury ). University of Arkansas Agricultural Experimental Station Bulletin No. 795.Google Scholar
  143. Wcislo, W. T. 1997. Are behavioral classifications blinders to natural variation? In B. J. Crespi and J. C. Choe (Eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge, UK. Pp. 8–13.Google Scholar
  144. West-Eberhard, M. J. 1975. The evolution of social behavior by kin selection. Quart. Rev. Biol. 50: 1–33.Google Scholar
  145. Whitham, T. G. 1979. Territorial behavior of Pemphigus gall aphids. Nature 279: 324–325.Google Scholar
  146. Wilkinson, G. S. and G. F. McCracken. 1985. On estimating relatedness using genetic markers. Evolution 11: 32–39.Google Scholar
  147. Wilkinson, R. C., G. C. Becker, and D. M. Benjamin. 1966. The biology of Neodiprion rugifrons (Hymenoptera: Diprionidae), a sawfly infesting jack pine in Wisconsin. Ann. Entomol. Soc. Am. 59: 786–792.Google Scholar
  148. Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.Google Scholar
  149. Williams, G. C. and D. C. Williams. 1957. Natural selection of individually harmful social adaptations among sibs with special reference to social insects. Evolution 11: 32–39.Google Scholar
  150. Wilson, D. S. 1975. A theory of group selection. Proc. Natl. Acad. Sci. USA 72: 143–146.PubMedGoogle Scholar
  151. Wilson, D. S. 1977. Structured demes and the evolution of group-advantageous traits. Am. Nat. 111: 157–185.Google Scholar
  152. Wilson, D. S. 1983. The group selection controversy: History and current status. Annu. Rev. Ecol. Syst. 14: 159–187.Google Scholar
  153. Wilson, E. O. 1971. The Insect Societies. Harvard University Press, Cambridge, MA.Google Scholar
  154. Wöhrman, K. and J. Tomiuk. 1988. Life cycle strategies and genotypic variability in populations of aphids. J. Genet. 67: 43–52.Google Scholar
  155. Woods, P. E. and S. I. Guttman. 1987. Genetic variation in Neodiprion (Hymenoptera: Symphyta: Diprionidae) sawflies and a comment on low levels of genetic diversity within the Hymenoptera. Ann. Entomol. Soc. Am. 80: 590–599.Google Scholar
  156. Wool, D. 1984. Gall-forming aphids. Pp. 11–58 in T. N. Ananthakrishnan (Ed.), Biology of Gall Insects. Oxford and IBH Publishing Co., New Delhi, India.Google Scholar
  157. Wrensch, D. L. and M. Ebbert (Eds.). 1992. Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman & Hall, New York.Google Scholar
  158. Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • James T. Costa
    • 1
  1. 1.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA

Personalised recommendations