Molecular-Dynamic Simulations of Many-Particle Systems: New Faces on Old Problems

  • Duane C. Wallace


There used to be two realities in the world of physics: Experiment and Theory. Now there are three, and the third one is The Computer. In the community of physicists outside of the computer-simulation enclave, there is a good deal of skepticism about computer simulations of many-particle systems. This skepticism is certainly justified at the present time. Nevertheless, in my opinion, computer simulation will affect the progress of physics in a profound way. The many-body problems that we worked on for decades will finally yield to computer simulation. This does not mean that many-body problems will suddenly become simple; the complications of these problems will appear in a new form. The question will be, how are computer simulations to be interpreted in terms of the mathematically posed problem, or in terms of physical reality. A computer-generated many-particle process contains an enormous amount of information, and the challenge will be to extract the information we want, leaving computer artifacts behind. In other words, the computer may have the answer, but we will have to figure out the question.


Molecular Dynamic Canonical Ensemble Molecular Dynamic Calculation Molecular Dynamic Result Canonical Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).CrossRefGoogle Scholar
  2. 2.
    C. Erginsoy, G. H. Vineyard, and A. Englert, Phys. Rev. 133, A595 (1964).CrossRefGoogle Scholar
  3. 3.
    A. Rahman, Phys. Rev. 136, A405 (1964).CrossRefGoogle Scholar
  4. 4.
    W. G. Hoover and B. J. Alder, J. Chem. Phys. 46, 686 (1967).CrossRefGoogle Scholar
  5. 5.
    W. W. Wood, in Fundamental Problems in Statistical Mechanics, ed. by E. D. G. Cohen (North-Holland, D. G. 1975 ), Vol. 3, p. 331.Google Scholar
  6. 6.
    J. J. Erpenbeek and W. W. Wood, in Statistical Mechanics, ed. by B. J. Berne (Plenum, New York, 1977), Pt. B, p. 1.Google Scholar
  7. 7.
    J. Kushick and B. J. Berne, in Statistical Mechanics, ed. by B. J. Berne (Plenum, New York, 1977), Pt. B, p. 41.Google Scholar
  8. 8.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles ( McGraw-Hill, New York, 1981 ).Google Scholar
  9. 9.
    J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250 (1967).CrossRefGoogle Scholar
  10. 10.
    F. Reif, Fundamentals of Statistical and Thermal Physics ( McGraw-Hill, New York, 1965 ).Google Scholar
  11. 11.
    G. K. Straub, R. E. Swanson, B. L. Holian, and D. C. Wallace, in Ab Initio Calculation of Phonon Spectra, ed. by J.T. Devreese, V.E. Van Doren and P.E. Van Camp ( Plenum, New York, 1983 ), p. 137.CrossRefGoogle Scholar
  12. 12.
    R. E. Swanson, G. K. Straub, B. L. Holian, and D. C. Wallace, Phys. Rev. B25, 7807 (1982).CrossRefGoogle Scholar
  13. 13.
    B. L. Holian, G. K. Straub, R. E. Swanson, and D. C. Wallace, Phys. Rev. B27, 2873 (1983).CrossRefGoogle Scholar
  14. 14.
    G. K. Straub, S. K. Schiferl, and D. C. Wallace, Phys. Rev. B28, 312 (1983).CrossRefGoogle Scholar
  15. 15.
    H. BT-Callen, Thermodynamics ( Wiley, New York, 1960 ).Google Scholar
  16. 16.
    S. K. Schiferl and D. C. Wallace, J. Chem. Phys. (to be published).Google Scholar
  17. 17.
    W. B. Davenport, Jr., Probability and Random Processes (McGraw-Hill, New York, 1970); see Ch. 9, §8 and 9.Google Scholar
  18. 18.
    J. V. Bradley, Distribution-Free Statistical Tests (Prentice-Hall, Englewood Cliffs, New Jersey, 1968 ).Google Scholar
  19. 19.
    W. J. Conover, Practical Nonparametric Statistics ( Wiley, New York, 1971 ).Google Scholar
  20. 20.
    S. S. Shapiro and M. B. Wilk, Biometrika 52, 591 (1965).Google Scholar
  21. 21.
    S. S. Shapiro, M. B. Wilk, and H. J. Chen, J. Am. Stat. Assoc. 63, 1343 (1968).CrossRefGoogle Scholar
  22. 22.
    G. W. Snedecor and W. G. Cochran, Statistical Methods (Iowa University Press, Ames, Iowa, 1967 ).Google Scholar
  23. 23.
    E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians (Cambridge University Press, Cambridge, 1954 ), Vol. I.Google Scholar
  24. 24.
    A. Hald, Statistical Theory with Engineering Applications ( Wiley, New York, 1952 ).Google Scholar
  25. 25.
    H. Grad, Comm. Pure and Appl. Math. 5, 455 (1952).Google Scholar
  26. 26.
    F. Lado, J. Chem. Phys. 75, 5461 (1981).CrossRefGoogle Scholar
  27. 27.
    D. C. Wallace and G. K. Straub, Phys. Rev. A27, 2201 (1983).CrossRefGoogle Scholar
  28. 28.
    D. C. Wallace, S. K. Schiferl, and G. K. Straub, Phys. Rev. A (to be published).Google Scholar
  29. 29.
    M. E. Fisher and J. L. Lebowitz, Comm. Math. Phys. 19, 251 (1970).CrossRefGoogle Scholar
  30. 30.
    J. L. Lebowitz and J. K. Percus, Phys. Rev. 124, 1673 (1961).CrossRefGoogle Scholar
  31. 31.
    Z. W. Salsburg, J. Chem. Phys. 44, 3090 (1966).CrossRefGoogle Scholar
  32. 32.
    W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A26, 2255 (1982).CrossRefGoogle Scholar
  33. 33.
    D. C. Wallace, Thermodynamics of Crystals ( Wiley, New York, 1972 ).Google Scholar
  34. 34.
    D. C. Wallace, Phys. Rev. 176, 832 (1968).CrossRefGoogle Scholar
  35. 35.
    M. P. Tosi, in Solid State Physics, edited by F. Seitz and D. Turnbull ( Academic, New York, 1964 ), Vol. 16, p. 1.Google Scholar
  36. 36.
    W. G. Hoover, J. Chem. Phys. 49, 1981 (1968).Google Scholar
  37. 37.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids ( Wiley, New York, 1954 ).Google Scholar
  38. 38.
    D. C. Wallace, B. L. Holian, J. D. Johnson, and G. K. Straub, Phys. Rev. A26, 2882 (1982).CrossRefGoogle Scholar
  39. 39.
    I. N. Makarenko, A. M. Nikolaenko, and S. M. Stishov, in High-Pressure Science and Technology, edited by K. D. Timmerhaus and M. S. Barber ( Plenum, New York, 1979 ), Vol. I, p. 347.Google Scholar
  40. 40.
    R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).CrossRefGoogle Scholar
  41. 41.
    E. Helfand, Phys. Rev. 119, 1 (196T.Google Scholar
  42. 42.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids ( Academic, New York, 1976 ).Google Scholar
  43. 43.
    W. G. Hoover and W. T. Ashurst, in Theoretical Chemistry, edited by H. Eyring and D. Henderson ( Academic, New York, 1975 ), Vol. 1, p. 1.Google Scholar
  44. 44.
    W. G. Hoover, Ann. Rev. Phys. Chem. 34, 103 (1983).CrossRefGoogle Scholar
  45. 45.
    D. Evans, H. J. M. Hanley, and S. Hess, Physics Today 37, 26 (1984).CrossRefGoogle Scholar
  46. 46.
    W. G. Hoover, Physics Today 37, 44 (1984).CrossRefGoogle Scholar
  47. 47.
    B. J. Alder and W. E. Alley, Physics Today 37, 56 (1984).CrossRefGoogle Scholar
  48. 48.
    H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).CrossRefGoogle Scholar
  49. 49.
    M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
  50. 50.
    M. Parinello, A. Rahman, and P. Vashishta, Phys. Rev. Lett. 50, 1073 (1983).CrossRefGoogle Scholar
  51. 51.
    F. F. Abraham, in Proc. Intern. Conf. on Ordering in Two Dimensions, edited by S. K. Sinha ( North-Holland, New York, 1980 ), p. 155.Google Scholar
  52. 52.
    F. F. Abraham, Physics Reports 80, 339 (1981).CrossRefGoogle Scholar
  53. 53.
    A. Rahman, Phys. Rev. A9, 1667 Tf974).Google Scholar
  54. 54.
    S. W. Haan, R. D. Mountain, C. S. Hsu, and A. Rahman, Phys. Rev. A22, 767 (1980).CrossRefGoogle Scholar
  55. 55.
    R. D. Mountain and P. K. Basu, Phys. Rev. A28, 370 (1983).CrossRefGoogle Scholar
  56. 56.
    A. C. Brown and R. D. Mountain, J. Chem. Phys. 80, 1263 (1984).CrossRefGoogle Scholar
  57. 57.
    G. Jacucci and M. L. Klein, in Liquid and Amorphous Metals, edited by E. Lüscher and H. Coufal ( Sigthoff and Nordhoff, Holland, 1980 ), p. 131.Google Scholar
  58. 58.
    G. Jacucci and I. R. McDonald, in Liquid and Amorphous Metals, edited by E. Lüscher and H. Coufal ( Sigthoff and Nordhoff, Holland, 1980 ), p. 143.Google Scholar
  59. 59.
    F. H. Stillinger and T. A. Weber, Phys. Rev. A25, 978 (1982).CrossRefGoogle Scholar
  60. 60.
    F. H. Stillinger and T. A. Weber, Phys. Rev. A28, 2408 (1983).CrossRefGoogle Scholar
  61. 61.
    T. A. Weber and F. H. Stillinger, J. Chem. Phys. 80, 2742 (1984).CrossRefGoogle Scholar
  62. 62.
    F. F. Abraham, “Computer Simulations of Surfaces, Interfaces, and Physisorbed Films,” to appear in J. Vac. Sci. Techn.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Duane C. Wallace
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations