The Photoimmunology of Delayed-Type Hypersensitivity and Its Relationship to Photocarcinogenesis

  • Edward C. De Fabo
  • Frances P. Noonan
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

The association between skin cancer and ultraviolet radiation has been known for a long time. In 1934, it was demonstrated that by filtering sunlight with ordinary window glass and then exposing white rats to this light the carcinogenic activity associated with unfiltered sunlight was eliminated.1 This suggested that the carcinogenic wavelengths had to be between 290 nm, the approximate lower wavelength limit of sunlight penetration through the atmosphere2 and 320 nm radiation, the approximate lower wavelength limit of penetration through window glass. This waveband is commonly defined as UVB. Since that time a large amount of circumstantial data supporting the role of sunlight (UVB) in at least three types of human skin cancer has accrued.2 These three types are basal cell epitheliomas, squanous cell carcinomas and melanoma.

Keywords

Stratum Corneum Suppressor Cell Action Spectrum Contact Hypersensitivity Immunologic Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Roffo, Cancer et soleil. Carcinomes et sarcomes provoqu6s par l’action du soleil in toto, Bull. Assoc. Franc. Etude Cancer. 23.5,90 (1934).Google Scholar
  2. 2.
    National Research Council, Causes and effects of stratospheric ozone reduction: an update, Committee on chemistry and physics of ozone depletion and the committee on biological effects of increased solar ultraviolet radiation, National Academy af Sciences, Washington, D.C. (1982).Google Scholar
  3. 3.
    M. S. Fisher, Immunologic aspects of UV carcinogenesis, Ph.D. Thesis, University of Utah, School of Medicine, Salt Lake City, Utah (1977).Google Scholar
  4. 4.
    M. S. Fisher, and M. L. Kripke, Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis, Proc. Natl. Acad. Sci. 74: 1688 (1977).CrossRefGoogle Scholar
  5. 5.
    H. F. Blum, Carcinogenesis by UV light, Princeton University Press, Princeton, New Jersey (1959).Google Scholar
  6. 6.
    P. D. Forbes, R. E. Davies, and F. Urbach, Experimental ultraviolet photocarcinogenesis: Wavelength interactions and time-dose relationships, Natl. Cancer Inst. Monograph 50:31 (1978).Google Scholar
  7. 7.
    I. Willis, J. M. Menter, and H. J. Whyte, The rapid inductions of cancers in the hairless mouse utilizing the principle of photoaugmentation, J. of Invest. Dermatol. 76:404 (1981).Google Scholar
  8. 8.
    E. C. De Fabo, and M. L. Kripke, Dose-response characteristics of immunologic unresponsiveness to UV-induced tumors produced by UV-irradiation of mice, Photochem. Photobiol. 30:385 (1979).Google Scholar
  9. 9.
    E. C. De Fabo, and M. L. Kripke, Wavelength dependence and dose-rate independence of UV radiation-induced immunologic unresponsiveness of mice to a UV-induced fibrosarcoma, Photochem. Photobiol. 32:183 (1980).Google Scholar
  10. 10.
    M. S. Fisher, and M. L. Kripke, Suppressor T lymphocytes control the development of primary skin cancers in Ultraviolet-irradiated mice, Science 216: 1133 (1982).Google Scholar
  11. 11.
    F. P. Noonan, E. C. De Fabo, and M. L. Kripke, Suppression of contact hypersensitivity by UV radiation and its relationship to UV-induced suppression of tumor immunity, Photochem. Photobiol. 34:683 (1981).Google Scholar
  12. 12.
    F. P. Noonan, M. L. Kripke, G. M. Pedersen, and M. I. Greene, Suppression of contact hypersensitivity in mice by ultraviolet irradiation is associated with defective antigen presentation, Immunology 43: 527 (1981).Google Scholar
  13. 13.
    M. I. Greene, M. S. Sy, M. L. Kripke, and B. Benacerraf, Impairment of antigen-presenting cell function by ultraviolet radiation, Proc. Natl. Acad. Sci. USA 76: 6592, (1979).CrossRefGoogle Scholar
  14. 14.
    E. C. De Fabo, and F. P. Noonan, Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J. Exp. Medicine, in press (1983).Google Scholar
  15. 15.
    F. P. Noonan, E. C. De Fabo, and M. L. Kripke, Suppression of contact hypersensitivity by ultraviolet radiation: An experimental model, Springer Seminars in Immunopathology 4: 293 (1981).CrossRefGoogle Scholar
  16. 16.
    R. B. Withrow, An interference filter monochromator system for the irradiation of biological material, Plant. Physiol. 32:335 (1957).Google Scholar
  17. 17.
    E. C. De Fabo, Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa Ph.D. Thesis, George Washington Univ., Washington, D. C. (1974).Google Scholar
  18. 18.
    E. C. De Fabo, R. W. Harding, and W. Shropshire, Jr., Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant.Physiol. 57:440 (1976).Google Scholar
  19. 19.
    W. Shropshire, Jr., Action spectroscopy in: “Phytochrome,” K. Mitrakos and W. Shropshire, Jr., editors, Academic Press, Inc., New York, p. 166 (1972).Google Scholar
  20. 20.
    R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. USA 71: 3363 (1974).CrossRefGoogle Scholar
  21. 21.
    P. M. Steinert, Epidermal keratin: Filaments and matrix in: “The Stratum Corneum,” R. Marks and G. Plewig, editors, Springer-Verlag, Berlin, in press (1982).Google Scholar
  22. 22.
    J. Jagger, Introduction to research in ultraviolet photo-biology, Prentice-Hall, Inglewood Cliffs, New Jersey, p. 58 (1967).Google Scholar
  23. 23.
    G. D. Fasman, Far ultraviolet absorption spectra of Amino Acids in: “CRC Handbook of Biochemistry and Molecular Biology,” 3rd edition, Proteins-Volume I, CRC Press, Cleveland, Ohio, p. 183 ff (1976).Google Scholar
  24. 24.
    M. F. Holick, J. A. Maclaughlin, M. B. Clark, S. A. Holick, J. T. Potts, Jr., R. R. Anderson, I. H. Blank, J. A. Parrish, and P. Elias, Photosynthesis of previtamin D3.n human skin and the physiologic consequences, Science 210: 203 (1980).Google Scholar
  25. 25.
    J. T. Lord, V. A. Ziboh, J. Pottier, G. Legget, and N. S. Penneys, The effects of photosensitizers and ultraviolet irradiation on the biosynthesis and metabolism of prostaglandins, Br. J. Derm. 95: 397 (1976).CrossRefGoogle Scholar
  26. 26.
    H. Morrison, D. Avnir, C. Bernasconi, and G. Fagan, Z/E photoisomerization of urocanic acid, Photochem. Photobiol. 32:711 (1980).Google Scholar
  27. 27.
    J. H. Anglin, Jr., Urocanic acid, a natural sunscreen, Cosmet. Toiletries 91:47 (1976).Google Scholar
  28. 28.
    I. R. Scott, Factors controlling the expressed activity of histidine ammonia-lyase in the epidermis and the resulting accumulation of urocanic acid, Biochem. J. 194: 829 (1981).Google Scholar
  29. 29.
    J. H. Anglin, and W. A. Batten, Structure of urocanic acid photodimers, Photochem. Phótobiol. 11:271 (1970).Google Scholar
  30. 30.
    H. Morrison, G. Pandey, C. Bernasconi, D. Avnir, and I. Tessman, Photochemistry and photobiology of urocanic acid. Abstract No. WAM-D7. 9th Annual Meeting of the American Society for Photobiology Williamsburg, VA., P. 143 (1981).Google Scholar
  31. 31.
    P. P. Agin, C. C. Lane, and R. M. Sayre, Ultraviolet irradiation induces optical and structural changes in the skin of hairless mice, Photobiochem. Photob ophys. 3:185 (1981).Google Scholar
  32. 32.
    W. Aberer, G. Schuler, G. Stingl, H. Königsmann, and K. Wolff, Ultraviolet light depletes surface markers of Langerhans cells, J. Invest. Dermatol. 76:202 (1981).Google Scholar
  33. 33.
    G. B. Toews, P. R. Bergstresser, and J. W. Streilein, Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follow skin painting with DNFB, J. Immunol. 124: 445 (1980).Google Scholar
  34. 34.
    F. P. Noonan, C. Bucana, D. N. Sauder, and E. C. De Fabo, The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. Manuscript submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Edward C. De Fabo
    • 1
  • Frances P. Noonan
    • 2
  1. 1.Department of DermatologyGeorge Washington University School of Medicine and Health SciencesU.S.A.
  2. 2.1st Department of DermatologyUniversity of ViennaAustria

Personalised recommendations