Photoregulation of E. Coli Growth and the near Ultraviolet Photochemistry of tRNA

  • Alain Favre
  • Eliane Hajnsdorf
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Summary

Near UV illumination of E. coli cells triggers a division and growth delay (GD). The mechanism of GD is analysed at the molecular level.

Keywords

Growth Delay Fluence Rate Link Formation Stringent Response Anticodon Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jagger, J.: Growth delay and photoprotection induced by near-ultraviolet light; in Gallo and Santamaria.Res. Prog. in Organic, Biological and Medical Chemistry, vol. 21, pp. 383–401 (1972).Google Scholar
  2. 2.
    Jagger, J. Inhibition by sunlight of the growth of E. coli B/r. Photochem. Photobiol 22: 67–70 (1975).Google Scholar
  3. 3.
    Green, A.E.S., Sawada, T., and Shettle, P.E.: The middle ultraviolet reaching the ground. Photochem. Photobiol 19: 251–259 (1974).Google Scholar
  4. 4.
    Luckiesh, M.: Germicidal energy, in Applications of Germicidal erythemal and infrared energy, pp. 107–136 ( Van Nostrand, New York 1946 ).Google Scholar
  5. 5.
    Calkins, J., Buckles, J.D., and Moeller, J.R.: The role of solar ultraviolet radiation in “natural” water purification. Photochem. Photobiol 24: 49–57 (1976).Google Scholar
  6. 6.
    Hollaender, A.: Effect of long ultraviolet and short visible radiation (3,500–4,900 A) on E. coli J. Bact. 46: 531–541 (1943).Google Scholar
  7. 7.
    Thomas, G. and Favre, A.: 4-thiouridine as the target for near ultraviolet-induced growth delay in E. coli. Biochem. Biophys. Res. Commun 66: 1454–1461 (1975).Google Scholar
  8. 8.
    Favre, A.: Croissance de la bactérie E. coli sous illumination à 366 nm. C.R. Acad. Sci., Paris 290, série D 1111–1114 (1980).Google Scholar
  9. 9.
    Thiam, K.: Reponse stringente et photoregulation de la croissance E coli. Thèse de 3ème cycle. Université Paris V I (1980).Google Scholar
  10. 10.
    Kasket, E.R. and Brodie, A.F.: Effects of near ultraviolet radiation on growth and oxidative metabolism of bacteria. J. Bact. 83: 1094–1100 (1962).Google Scholar
  11. 11.
    Holley, R.W., Apgar, J., Everett, G.G., Madison, J.T., Marguisse, M., Merril, S.H., Penwick, J.R., and Zamir, A.: Structure of a ribonucleic acid. Science 147: 1462–1465 (1965).Google Scholar
  12. 12.
    Lipsett, M.N.: Disulfide bonds in tRNA. Cold Spring Harb. Symp. quant. Biol. 31: 449–455 (1966).Google Scholar
  13. 13.
    Yaniv, M. and Barrel, B.G.: The sequence from E. coli tRNAvjl Nature new Biol. 233: 113–114 (1969).Google Scholar
  14. 14.
    Favre, A., Michelson, A1I1., and Yaniv, M.: Photochemistry of 4-thiouridine in E. coli transfer RNAv/l. J. Molec Biol. 58: 367–370 (1971).Google Scholar
  15. 15.
    Favre, A., Yaniv, M. and Michelson, A.M. • The photochemistry of 4-thiouridine in E. coli tRNAv/l. Biochem. Biophys Res. Commun. 37: 266–271 (1969).Google Scholar
  16. 16.
    Favre, A. and Yaniv, M.: Introduction of an intramolecular fluorescent probe in E. coli tRNAvjl. FEBS Lett 17: 236–240 (1971).Google Scholar
  17. 17.
    Yaniv, M., Favre, A. and Barrel, B.G.: Structure of transfer RNA. Nature Lond. 223: 1331–1333 (1969).Google Scholar
  18. 18.
    Favre, A., Roques, B. and Fourrey, J.L.: Chemical structures of the TU-C and TU-Cred products derived from E. coli tRNA. FEBS Lett 24: 209–214 (1972).Google Scholar
  19. 19.
    Bergstrom, D.E., Inoue, I. and Leonard, N.J.: Synthesis of the 335 nm photoproduct of cytosine and 4-thiouracil. J. Org. Chem. 37: 3902–3907 (1972).Google Scholar
  20. 20.
    Bergstrom, D.E. and Leonard, N.J.: Structure of the borohydride reduction product of photolinked 4-thiouracil and cytosine. Fluorescent probe of transfer ribonucleic acid tertiary structure. J. Am. Chem. Soc 94: 6178–6182 (1972).Google Scholar
  21. 21.
    Bergstrom, D.E., and Leonard N.J.: Photoreaction of 4-thiouracil with cytosine. Relation to photoreactions in E. coli transfer ribonucleic acid. Biochemistry 11: 1–9 (1972).Google Scholar
  22. 22.
    Ofengand, J. and Bierbaum, J.: Use of photochemically induced cross-linking as a conformational probe of the tertiary structure od certain regions of transfer ribonucleic acid. J. Biochem 32: 1977–1984 (1973).Google Scholar
  23. 23.
    Chaffin, L., Omilianowski, D.R. and Bock, R.M.: Cross-linked transfer RNA functions in all steps of the translation process. Science 172: 854–855 (1971).Google Scholar
  24. 24.
    Singer, C.E. and Smith, G.R.: Histidine regulation in Salmonella typhimurium. J. Biol. Chem 247: 2989–3000 (1972).Google Scholar
  25. 25.
    Buckingham, R.H., Danchin, A. and Grunberg-Manago, M.: The effect of an intramolecular cross-link on reversible denaturation in tryptophan tRNA from E. coli.Biochemistry N.Y. 12: 5393–5399 (1973).Google Scholar
  26. 26.
    Delanay, P. Bierbaum, J. and Ofengand, J.: Conformational changes in the 4-thiouridine region of E. coli transfer RNA as assessed by photochemically induced cross-linking. Arch. Biochem. Biophys 161: 260–267 (1974).Google Scholar
  27. 27.
    Carre, D.S., Thomas, G. and Favre, A.: Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleoridyl-transferase and aminoacyl-synthetases. Biochimie 56: 1089–1101 (1974).Google Scholar
  28. 28.
    Favre, A., Buckingham, R. and Thomas, G.: tRNA tertiary structure in solution as probed by the photochemically induced 8.13 cross-link. Nucl. Acid. Res 2: 1421–1432 (1975).Google Scholar
  29. 29.
    Shing Chang and Carbon, J.: The nucleotide sequence of a precursor to the glycine and threonine specific tRNA of E. coli. J. Biol. Chem 250: 5542–5555 (1975).Google Scholar
  30. 30.
    Krauskopf, M. Chong-Maw, C. and Ofengand, J.: Interaction of fragmented and cross-linked E. coli valine tRNA with Tu factor-Guanosine triphosphate complex. J. Biol. Chem 247: 842–850 (1972).Google Scholar
  31. 31.
    Kumar, S.A., Krauskopf, M. and Ofengand, J.: Effect of intramolecular photochemical cross-linking and of alkylation of 4-thiouridine in E. coli tRNAv11. J. Biochem 74: 341–353 (1973).Google Scholar
  32. 32.
    Favre, A. and Fourrey, J.L.: Intramolecular cross-linking of single stranded copolymers of 4-thiouridine and cytidine. Biochem. Biophys. Res. Commun 58: 507–515 (1974).Google Scholar
  33. 33.
    Sussman, J.L. and Kim, S.Y.: Three dimensional structure of a transfer RNA in two crystal forms. Science 192: 853858 (1976).Google Scholar
  34. 34.
    Fourrey, J.L., Jouin, P. and Moron, J.: Thiocarbonyl photochemistry. Thietanes obtention from 4-thiouracil derivatives. Tetrah. Lett 35: 3005–3006 (1974).Google Scholar
  35. 35.
    Ninio, J., Luzzati, V. and Yaniv, M.: Comparative small-angle X-rays scattering studies on unacylated, acylated and cross-linked E. coli tRNAv!l. J. Molec. Biol 71: 217–229 (1972).Google Scholar
  36. 36.
    Eisinger, J. and Gross, N.: The anticodon-anticodon complex. J. Molec. Biol 88: 165–174 (1974).Google Scholar
  37. 37.
    Kearns, D.: High-resolution NMR of tRNA; in Frog. in Nucleic Acid Research (1976).Google Scholar
  38. 38.
    Yaniv, M., Chestier, A., Gros, F. and Favre, A.: Biological Activity of irradiated tRNAvjl containing a 4-thiouridinecytosine dimer. J. Molec. Biol 58: 367–370 (1969).Google Scholar
  39. 39.
    Berthelot, F., Gros, F. and Favre, A.: Biological activity of cross-linked E. coli tRNAM£t. Eur. J. Biochem 29: 343–347 (1972).Google Scholar
  40. 40.
    Blanquet, S., Petrissant, G. and Waller, J.P.: The mechanism of action of methionyl-tRNA synthetase. Eur. J. Biochem 36: 227–233 (1973).Google Scholar
  41. 41.
    Ramabhadran, T.V. and Jagger, J.: The mechanism of growth delay induced on E. coli by near ultra-violet radiations. Proc. Natl. Acad. Sci. USA 73: 59–69 (1976).Google Scholar
  42. 42.
    Thomas, G. and Favre, A.: Mutants de E. coli deficients en 4-thiouridine dont la croissance est insensible à l’illumination à 365 nm. C.R. Acad. Sci. Paris Série D 286, 1345–1347 (1977).Google Scholar
  43. 43.
    Thomas, G. and Favre, A.: Localisation génétique d’une mutation qui rend la croissance de E. coli K 12 insensible à l’illumination à 365 nm. C.R. Acad. Sci. Série D.,284: 2285–2288 (1977).Google Scholar
  44. 44.
    Thomas, G. and Favre, A.: 4-thiouridine triggers both growth delay induced by near ultra-violet light and photoprotection. Eur. J. Biochem 113: 64–74 (1980).Google Scholar
  45. 45.
    Ramabhadran, T.V., Fossum, T. and Jagger, J. : Isolation of 4-thiouridine deficient E. coli B mutant. J. Bacteriol 128 : 671–672.Google Scholar
  46. 46.
    Favre, A.: Luminescence and photochemistry of 4-thiouridine in aqueous solution. Photochem. Photobiol 19: 15–19 (1974).Google Scholar
  47. 47.
    Holler, E., Baltzinger, M. and Favre, A.: Catalytic mechanism of phenylalanyl–tRNA synthetase of E. coli K 10. Biochemistry 20: 1139–1147 (1981).Google Scholar
  48. 48.
    Favre, A., Ballini, J.P. and Holler, E.: Phenylalanine-tRNA synthetase induced conformational change of E. coli tRNAPhe. Biochemistry 13: 2887–2895 (1979).Google Scholar
  49. 49.
    Cassion D. and Mathien, Y.: Effect of L-methioninyl adenylate on the level of aminoacylation in vivo of tRNAM2t from E. coli. Nuc1. Acid. Res 1: 719–725 (1974).Google Scholar
  50. 50.
    Ramabhadran, T.V.: Effects of near ultra violet radiations (313–405 nm) on DNA, RNA, and protein synthesis in E. coli B/r: implications for growth delay. Photochem. Photobiol 22: 117–123 (1975).Google Scholar
  51. 51.
    Ramabhadran, T.V., Fossum, T. and Jagger, J.: In vivo induction of 4-thiouridine cytidine adducts in the tRNA of E. coli B/r by near ultra violet radiations. Photochem. Photobiol 23: 315–321 (1976).Google Scholar
  52. 52.
    Ramabhadran, T.V.: Methods for the isolation of E. coli relaxed mutants utilizing near ultra violet radiations. J Bact. 127: 1587–1592 (1976).Google Scholar
  53. 53.
    Gallant, J. and Cashel, M.: On the mechanism of aminoacid control of RNA synthesis. J. Mol. Biol 25: 545–553 (1967).Google Scholar
  54. 54.
    Engel, J.A., Sylvester, J. and Cashel, M. : Guanosine 3’, 5’ bipyrophosphate is a dispensable metabolite. In D. Richter and G. Koch (ed). Regulation of macromolecular synthesis by low molecular weight mediators p. 25. 38. Academic Press inc., New York.Google Scholar
  55. 55.
    Sawada, F.: Kinetics of 4-thiouridylate sensitized photoinactivation of ribonuclease A. Photochem Photobiol. 20: 523–526 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Alain Favre
    • 1
  • Eliane Hajnsdorf
    • 1
  1. 1.Institut Jacques MonodC.N.R.S. and Université Paris VIParis Cedex 05France

Personalised recommendations