Biological Photoresponses and Photoreceptors

  • W. ShropshireJr.
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)


The sun is a star which emits electromagnetic radiation from its surface as a result of the energy released in the fusion process by which the nuclei of four hydrogen atoms are consumed in a three-step process to make one helium atom.1 The earth, as the third planet in the solar system, revolves around the sun at a mean distance of 150 million kilometers and intercepts only a small portion of the total energy produced by the sun. However, this amount of radiant energy is well suited for the development and maintenance of life on the earth.


Action Spectrum Visual Pigment Fluence Rate Pyrimidine Dimer Accessory Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. T. Henderson, “Daylight and Its Spectrum,” American Elsevier Publishing Company, Inc., New York (1970).Google Scholar
  2. 2.
    A. Dauvillier, “The Photochemical Origin of Life,” Academic Press, New York ( 1965 ); M. Calvin, “Chemical Evolution, Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere,” Oxford University Press, New York (1969).Google Scholar
  3. 3.
    M. P. Thekaekara, Proposed standard values of the solar constant and the solar spectrum, J. Environ. Sci. 13: 6–9 (1970).Google Scholar
  4. 4.
    A. J. Drummond and J. R. Hickey, The Eppley–JPL Solar Constant Measurement Program, Solar Energy, 12: 217–232 (1968).CrossRefGoogle Scholar
  5. 5.
    D. N. H. Horler and J. Barber, Principles of Remote Sensing of Plants, in: “Plants and the Daylight Spectrum,” H. Smith, ed., Academic Press, London (1981), p. 45.Google Scholar
  6. 6.
    C. V. Raman, On the molecular scattering of light in water and the colour of the sea. Proc. Roy. Soc. (London), Ser. A, 101: 64–79 (1922).CrossRefGoogle Scholar
  7. 7.
    J. Lenoble, Remarque sur la couleur de la mer. Compt. Rend., 242:662–664 ( 1956 ); N. G. Jerlov, “Optical Oceanography,” Elsevier Publishing Company, Amsterdam (1968).Google Scholar
  8. 8.
    J. B. Wolff and L. Price, Terminal steps of chlorophyll A biosynthesis in higher plants, Arch. Biochem. Biophys. 72: 293–301 (1957).CrossRefGoogle Scholar
  9. 9.
    F. Nielsen and A. Kahn, Kinetics and quantum yield of photoconversion of protochlorophyll(ide) to chlorophyll(ide) a. Biochim. Biophys. Acta 292: 117–129 (1973).CrossRefGoogle Scholar
  10. 10.
    A. F. Wagner and K. Folkers, “Vitamins and Coenzymes”, Interscience Publishers, New York (1964).Google Scholar
  11. 11.
    D. Kritchevsky, Sterols, in: “Comprehensive Biochemistry,” M. Florkin and E. H. Stotz, eds., Elsevier Publishing Company, Amsterdam (1963) pp. 1–22.Google Scholar
  12. 12.
    W. F. Loomis, Skin-pigmentation regulation of vitamin D biosynthesis in man, Science 157: 501–506 (1967).CrossRefGoogle Scholar
  13. 13.
    T. B. Fitzpatrick, M. A. Pathak, L. C. Harter, M. Seiji and A. Kukita, eds., “Sunlight and Man,”University of Tokyo Press, Tokyo (1974).Google Scholar
  14. 14.
    J. H. Epstein, Photomedicine, in: “The Science of Photobiology,” Chapter 7, pp. 175–207, K. C. Smith, ed., Plenum Publishing Corporation, New York (1977).Google Scholar
  15. 15.
    A. C. Giese, “Living with Our Sun’s Ultraviolet Rays,” Plenum Press, New York and London (1976).Google Scholar
  16. 16.
    H. Harm, Repair of UV-irradiated Biological Systems: Photoreactivation, in: “Photochemistry and Photobiology of Nucleic Acids,” S. Y. Yang, ed., vol. 2, pp. 219–263, Academic Press, New York (1976).CrossRefGoogle Scholar
  17. 17.
    J. C. Sutherland, Photophysics and photochemistry of photoreactivation, Photochem. Photobiol. 25: 435–440 (1977).CrossRefGoogle Scholar
  18. 18.
    S. J. Britz, Chloroplast and Nuclear Migration, in: “Physiology of Movements”, Encyclopedia of Plant Physiology, Vol. 7:170–205, Springer-Verlag, Berlin, Heidelberg and New York (1979).Google Scholar
  19. 19.
    R. K. Clayton, “Photosynthesis: Physical Mechanisms and Chemical Patterns,” Cambridge University Press, Cambridge (1980).Google Scholar
  20. 20.
    L. N. M. Duysens, Transfer of Excitation Energy in Photosynthesis, Doctoral Thesis, State University, Utrecht, The Netherlands (1952).Google Scholar
  21. 21.
    E. Gantt, Phycobilisomes, Ann. Rev. Plant Physiol. 32: 327–347 (1981).CrossRefGoogle Scholar
  22. 22.
    K. J. McCree, The action spectrum, absorptance and quantum yield of photosynthesis in crop plants, Agr. Meteorol. 9: 191–216 (1972).Google Scholar
  23. 23.
    D. 0. Hall, Solar energy use through biology–past, present, and future, Solar Energy 22: 307–328 (1979).CrossRefGoogle Scholar
  24. 24.
    R. Wehner, ed., “Information Processing in the Visual Systems of Arthropods,” Springer-Verlag, Berlin (1972).Google Scholar
  25. 25.
    G. Wald, Molecular basis of visual excitation. Science 162: 230–239 (1968).CrossRefGoogle Scholar
  26. 26.
    E. W. Abrahamson and R. S. Foger, The chemistry of vertebrate and invertebrate visual photoreceptors, Curr. Top. Bioenergetics 5: 125–200 (1973).Google Scholar
  27. 27.
    T. G. Ebrey and B. Honig, Molecular aspects of photoreceptor function, Quart. Rev. Biophys. 8: 129–184 (1975).CrossRefGoogle Scholar
  28. 28.
    J. N. Lythgoe, “The Ecology of Vision,” Oxford University Press, Oxford, 1979.Google Scholar
  29. 29.
    J. Schwemer, K. Hamdorf and M. Gugola, Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z. Vergl. Physiol. 75: 174–178 (1971).Google Scholar
  30. 30.
    R. Menzel, Colour receptors in insects, in: “The Compound Eye and Vision in Insects,” A. Horridge ed., pp. 121–153, Clarendon Press, Oxford (1975).Google Scholar
  31. 31.
    K. Kirschfeld, N. Franceschini and B. Minke, Evidence for a sensitising pigment in fly photoreceptors, Nature (London) 269: 386–390 (1977).CrossRefGoogle Scholar
  32. 32.
    J. DeGreef, ed. “Photoreceptors and Plant Development,” Antwerpen University Press, Antwerpen (1980).Google Scholar
  33. 33.
    W. Shropshire, Jr., and H. Mohr, eds., “Photomorphogenesis,” Vol. 16, Encyclopedia of Plant Physiology, Springer-Verlag, Berlin, 1982 (in press).Google Scholar
  34. 34.
    K. Lüning, Photomorphogenesis of reproduction in marine macroalgae, Ber. Deutsch. Bot. Ges. 94: 401–417 (1981).Google Scholar
  35. 35.
    D. S. Dennison, Phototropism, in: “Physiology of Movements,” Vol. 7 Encyclopedia of Plant Physiology, W. Haupt and M. E. Feinleib, eds., pp. 506–566, Springer-Verlag, Berlin and Heidelberg (1979).Google Scholar
  36. 36.
    H. Senger, ed., “The Blue Light Syndrome,” Springer-Verlag, Berlin and Heidelberg, New York (1980).Google Scholar
  37. 37.
    D. Presti and M. Delbrück, Photoreceptors for biosynthesis, energy storage and vision. Plant, Cell and Environment, 1: 81–100 (1978).CrossRefGoogle Scholar
  38. 38.
    K. M. Hartmann, A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5: 349–366 (1966).CrossRefGoogle Scholar
  39. 39.
    R. W. Harding and W. Shropshire, Jr., Photocontrol of carotenoid biosynthesis, Ann. Rev. Plant Physiol. 31: 217–238 (1980).CrossRefGoogle Scholar
  40. 40.
    B. D. Whitaker and W. Shropshire, Jr., Spectral sensitivity in the blue and near ultraviolet for light-induced carotene synthesis in Phycomyces mycelia, Exp. Mycol. 5: 243–252 (1981).CrossRefGoogle Scholar
  41. 41.
    P. Galland, Action spectra for photogeotropic equilibria in the fungus, Phycomyces, Photochem. Photobiol. (1982) (In press).Google Scholar
  42. 42.
    G. Löser and E. Schäfer, Phototropism in Phycomyces: A Photochromic Sensor Pigment?, in: “The Blue Light Syndrome”, pp. 244–250, H. Senger, ed., Springer-Verlag, Berlin, Heidelberg, New York (1981).Google Scholar
  43. 43.
    D. Vince-Prue, “Photoperiodism in Plants,” McGraw-Hill, London (1975).Google Scholar
  44. 44.
    S. D. Beck, “Insect Photoperiodism,” Academic Press, New York and London (1968).Google Scholar
  45. 45.
    R. M. Eakin, “The Third Eye,” University of California Press, Berkeley (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • W. ShropshireJr.
    • 1
  1. 1.Smithsonian Radiation Biology LaboratoryRockvilleUSA

Personalised recommendations