Skip to main content

Biological Photoresponses and Photoreceptors

  • Chapter
  • 49 Accesses

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 68))

Abstract

The sun is a star which emits electromagnetic radiation from its surface as a result of the energy released in the fusion process by which the nuclei of four hydrogen atoms are consumed in a three-step process to make one helium atom.1 The earth, as the third planet in the solar system, revolves around the sun at a mean distance of 150 million kilometers and intercepts only a small portion of the total energy produced by the sun. However, this amount of radiant energy is well suited for the development and maintenance of life on the earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. T. Henderson, “Daylight and Its Spectrum,” American Elsevier Publishing Company, Inc., New York (1970).

    Google Scholar 

  2. A. Dauvillier, “The Photochemical Origin of Life,” Academic Press, New York ( 1965 ); M. Calvin, “Chemical Evolution, Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere,” Oxford University Press, New York (1969).

    Google Scholar 

  3. M. P. Thekaekara, Proposed standard values of the solar constant and the solar spectrum, J. Environ. Sci. 13: 6–9 (1970).

    Google Scholar 

  4. A. J. Drummond and J. R. Hickey, The Eppley–JPL Solar Constant Measurement Program, Solar Energy, 12: 217–232 (1968).

    Article  Google Scholar 

  5. D. N. H. Horler and J. Barber, Principles of Remote Sensing of Plants, in: “Plants and the Daylight Spectrum,” H. Smith, ed., Academic Press, London (1981), p. 45.

    Google Scholar 

  6. C. V. Raman, On the molecular scattering of light in water and the colour of the sea. Proc. Roy. Soc. (London), Ser. A, 101: 64–79 (1922).

    Article  Google Scholar 

  7. J. Lenoble, Remarque sur la couleur de la mer. Compt. Rend., 242:662–664 ( 1956 ); N. G. Jerlov, “Optical Oceanography,” Elsevier Publishing Company, Amsterdam (1968).

    Google Scholar 

  8. J. B. Wolff and L. Price, Terminal steps of chlorophyll A biosynthesis in higher plants, Arch. Biochem. Biophys. 72: 293–301 (1957).

    Article  Google Scholar 

  9. F. Nielsen and A. Kahn, Kinetics and quantum yield of photoconversion of protochlorophyll(ide) to chlorophyll(ide) a. Biochim. Biophys. Acta 292: 117–129 (1973).

    Article  Google Scholar 

  10. A. F. Wagner and K. Folkers, “Vitamins and Coenzymes”, Interscience Publishers, New York (1964).

    Google Scholar 

  11. D. Kritchevsky, Sterols, in: “Comprehensive Biochemistry,” M. Florkin and E. H. Stotz, eds., Elsevier Publishing Company, Amsterdam (1963) pp. 1–22.

    Google Scholar 

  12. W. F. Loomis, Skin-pigmentation regulation of vitamin D biosynthesis in man, Science 157: 501–506 (1967).

    Article  Google Scholar 

  13. T. B. Fitzpatrick, M. A. Pathak, L. C. Harter, M. Seiji and A. Kukita, eds., “Sunlight and Man,”University of Tokyo Press, Tokyo (1974).

    Google Scholar 

  14. J. H. Epstein, Photomedicine, in: “The Science of Photobiology,” Chapter 7, pp. 175–207, K. C. Smith, ed., Plenum Publishing Corporation, New York (1977).

    Google Scholar 

  15. A. C. Giese, “Living with Our Sun’s Ultraviolet Rays,” Plenum Press, New York and London (1976).

    Google Scholar 

  16. H. Harm, Repair of UV-irradiated Biological Systems: Photoreactivation, in: “Photochemistry and Photobiology of Nucleic Acids,” S. Y. Yang, ed., vol. 2, pp. 219–263, Academic Press, New York (1976).

    Chapter  Google Scholar 

  17. J. C. Sutherland, Photophysics and photochemistry of photoreactivation, Photochem. Photobiol. 25: 435–440 (1977).

    Article  Google Scholar 

  18. S. J. Britz, Chloroplast and Nuclear Migration, in: “Physiology of Movements”, Encyclopedia of Plant Physiology, Vol. 7:170–205, Springer-Verlag, Berlin, Heidelberg and New York (1979).

    Google Scholar 

  19. R. K. Clayton, “Photosynthesis: Physical Mechanisms and Chemical Patterns,” Cambridge University Press, Cambridge (1980).

    Google Scholar 

  20. L. N. M. Duysens, Transfer of Excitation Energy in Photosynthesis, Doctoral Thesis, State University, Utrecht, The Netherlands (1952).

    Google Scholar 

  21. E. Gantt, Phycobilisomes, Ann. Rev. Plant Physiol. 32: 327–347 (1981).

    Article  Google Scholar 

  22. K. J. McCree, The action spectrum, absorptance and quantum yield of photosynthesis in crop plants, Agr. Meteorol. 9: 191–216 (1972).

    Google Scholar 

  23. D. 0. Hall, Solar energy use through biology–past, present, and future, Solar Energy 22: 307–328 (1979).

    Article  Google Scholar 

  24. R. Wehner, ed., “Information Processing in the Visual Systems of Arthropods,” Springer-Verlag, Berlin (1972).

    Google Scholar 

  25. G. Wald, Molecular basis of visual excitation. Science 162: 230–239 (1968).

    Article  Google Scholar 

  26. E. W. Abrahamson and R. S. Foger, The chemistry of vertebrate and invertebrate visual photoreceptors, Curr. Top. Bioenergetics 5: 125–200 (1973).

    Google Scholar 

  27. T. G. Ebrey and B. Honig, Molecular aspects of photoreceptor function, Quart. Rev. Biophys. 8: 129–184 (1975).

    Article  Google Scholar 

  28. J. N. Lythgoe, “The Ecology of Vision,” Oxford University Press, Oxford, 1979.

    Google Scholar 

  29. J. Schwemer, K. Hamdorf and M. Gugola, Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z. Vergl. Physiol. 75: 174–178 (1971).

    Google Scholar 

  30. R. Menzel, Colour receptors in insects, in: “The Compound Eye and Vision in Insects,” A. Horridge ed., pp. 121–153, Clarendon Press, Oxford (1975).

    Google Scholar 

  31. K. Kirschfeld, N. Franceschini and B. Minke, Evidence for a sensitising pigment in fly photoreceptors, Nature (London) 269: 386–390 (1977).

    Article  Google Scholar 

  32. J. DeGreef, ed. “Photoreceptors and Plant Development,” Antwerpen University Press, Antwerpen (1980).

    Google Scholar 

  33. W. Shropshire, Jr., and H. Mohr, eds., “Photomorphogenesis,” Vol. 16, Encyclopedia of Plant Physiology, Springer-Verlag, Berlin, 1982 (in press).

    Google Scholar 

  34. K. Lüning, Photomorphogenesis of reproduction in marine macroalgae, Ber. Deutsch. Bot. Ges. 94: 401–417 (1981).

    Google Scholar 

  35. D. S. Dennison, Phototropism, in: “Physiology of Movements,” Vol. 7 Encyclopedia of Plant Physiology, W. Haupt and M. E. Feinleib, eds., pp. 506–566, Springer-Verlag, Berlin and Heidelberg (1979).

    Google Scholar 

  36. H. Senger, ed., “The Blue Light Syndrome,” Springer-Verlag, Berlin and Heidelberg, New York (1980).

    Google Scholar 

  37. D. Presti and M. Delbrück, Photoreceptors for biosynthesis, energy storage and vision. Plant, Cell and Environment, 1: 81–100 (1978).

    Article  Google Scholar 

  38. K. M. Hartmann, A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5: 349–366 (1966).

    Article  Google Scholar 

  39. R. W. Harding and W. Shropshire, Jr., Photocontrol of carotenoid biosynthesis, Ann. Rev. Plant Physiol. 31: 217–238 (1980).

    Article  Google Scholar 

  40. B. D. Whitaker and W. Shropshire, Jr., Spectral sensitivity in the blue and near ultraviolet for light-induced carotene synthesis in Phycomyces mycelia, Exp. Mycol. 5: 243–252 (1981).

    Article  Google Scholar 

  41. P. Galland, Action spectra for photogeotropic equilibria in the fungus, Phycomyces, Photochem. Photobiol. (1982) (In press).

    Google Scholar 

  42. G. Löser and E. Schäfer, Phototropism in Phycomyces: A Photochromic Sensor Pigment?, in: “The Blue Light Syndrome”, pp. 244–250, H. Senger, ed., Springer-Verlag, Berlin, Heidelberg, New York (1981).

    Google Scholar 

  43. D. Vince-Prue, “Photoperiodism in Plants,” McGraw-Hill, London (1975).

    Google Scholar 

  44. S. D. Beck, “Insect Photoperiodism,” Academic Press, New York and London (1968).

    Google Scholar 

  45. R. M. Eakin, “The Third Eye,” University of California Press, Berkeley (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shropshire, W. (1983). Biological Photoresponses and Photoreceptors. In: Montagnoli, G., Erlanger, B.F. (eds) Molecular Models of Photoresponsiveness. NATO Advanced Science Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0896-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0896-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0898-1

  • Online ISBN: 978-1-4757-0896-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics