Skip to main content

Conformational Models of Light Energy Utilization in Photoreceptive Systems

  • Chapter
Molecular Models of Photoresponsiveness

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 68))

  • 46 Accesses

Abstract

Three steps can be recognized when a response to light is evoked from a biological system. The primary event of absorption of a quantum of light by the photoreceptor is followed by transduction through dark processes in which amplification may occur and finally the system adapts to a new equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley Interscience, New York (1980).

    Google Scholar 

  2. D. L. Ross and J. Blanc, Photochromism by cis-trans isomerization, in: “Photochromism”, G. H. Brown, ed., Wiley Interscience, New York (1971).

    Google Scholar 

  3. R. C. Bertelson, Photochromic precesses involving heterolytic cleavage, in: “Photochromism”, G. H. Brown, ed., Wiley Interscience, New York (1971).

    Google Scholar 

  4. G. S. Hartley, The cis-form of azobenzene, Nature 140: 281 (1937).

    Article  Google Scholar 

  5. R. Lovrien, P. Peschek and W. Tisel, Protein and hydrogen ion control of photochromism in aminoazobenzene compounds, J. Am. Chem. Soc. 96:244 (1974).

    Google Scholar 

  6. D. C. Wilson and H. G. Drickamer, High pressure studies on spiropyrans, J. Chem. Phys. 63:3649 (1975).

    Google Scholar 

  7. W. Maier and A. Saupe, A simple molecular theory of the nematic crystalline-liquid state, Z. Naturforsch. 13a:564 (1958).

    Google Scholar 

  8. L. Onsager, The effects of shapes on the interaction of colloidal particles, Ann. N. Y. Acad. Sci. 51:527 (1949).

    Google Scholar 

  9. D. E. Martire, Thermodynamics of phase transitions, in: “The Molecular Physics of Liquid Crystals”, G. R. Lockhurst and G. W. Gray, eds., Academic Press, New York (1979).

    Google Scholar 

  10. G. Pelzl, Transformation of nematic into isotropic phase by photochemical isomerization, Z. Chem. 17:294 (1977); C. Leier and G. Pelzl, Phase transitions of liquid crystalline modifications by photochemical isomerization, J. Pract. Chem. 321:197 (1979).

    Google Scholar 

  11. H. Baessler and M. M. Labes, Helical twisting power of steroidal solutes in cholesteric mesophases, J. Chem. Phys. 52:631 (1970).

    Google Scholar 

  12. F. D. Saeva, Cholesteric liquid-crystal-induced circular dichroism in achiral solutes. A novel spectroscopic technique, J. Am. Chem. Soc. 94:5135 (1972).

    Google Scholar 

  13. F. D. Saeva, Liquid crystals, the fourth state of matter, Marcel Dekker, New York (1979).

    Google Scholar 

  14. T. Kunitake and Y. Okahata, Synthetic molecular membranes and their functions, in: “Advances in Solution Chemistry”, I. Bertini, L. Lunazzi and A. Dei, eds., Plenum Publishing Co., New York (1981).

    Google Scholar 

  15. K. L. Mittal, Micellization, solubilization and microemulsions, vols. 1 and 2, Plenum Press, New York (1977).

    Google Scholar 

  16. P. A. Winsor, Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure and theoretical significance of liquid crystalline compounds, Chem. Rev. 68:1 (1968).

    Google Scholar 

  17. M. Shimomura and T. Kunitake, Fusion and phase separation of ammonium bilayer membranes, Chem. Letters 1001 (1981).

    Google Scholar 

  18. T. Kunitake, N. Nakashima, M. Shimomura, Y. Okahata, K. Kano and T. Ogawa, Unique properties of chromophore-containing bilayer aggregates: enhanced chirality and photochemically induced morphological change, J. Am. Chem. Soc. 102:6642 (1980).

    Google Scholar 

  19. N. Nakashima, H. Fukushima and T. Kunitake, Spectral control of methyl orange and cyanine dyes by synthetic bilayer membranes, Chem. Letters 1555 (1981).

    Google Scholar 

  20. A. Cooper, Thermodynamic fluctuations in protein molecules, Proc. Natl. Acad. Sci. USA 73:2740 (1976).

    Google Scholar 

  21. G. Nemethy, W. Peer and H. A. Scheraga, Effect of protein--solvent interactions on protein conformation, Ann. Rev. Biophys. Bioeng. 10:459 (1981).

    Google Scholar 

  22. C. Tanford, Protein denaturation, Adv. Protein Chem. 23:121 (1968).

    Google Scholar 

  23. L. Cordone, A. Cupane, P. L. San Biagio and E. Vitrano, Effect of some organic co-solvents on the reaction of hemoglobin with oxigen, Biopolymers 20: 39 (1981).

    Google Scholar 

  24. M. Dreyfus, B. Vanderbunder and H. Buc, Stabilization of a phosphorylase b active conformation by hydrophobic solvents, FEBS Letters 95: 185 (1978).

    Google Scholar 

  25. P. Elodi, The effect of solvents on the activity of some enzymes, Acta Physiol. Acad. Sci. Hung.20:311 (1961).

    Google Scholar 

  26. E. Sackman, Photochemically induced reversible color change in cholesteric liquid crystals, J. Am. Chem. Soc. 93:7088 (1981).

    Google Scholar 

  27. B. Schnuriger and J. Bourdon, Photoisomérization dans le milieux mésomorphes cholestériques. Influence sur le propriétés optiques du milieu, J. Chim. Phys. 73:795 (1976).

    Google Scholar 

  28. K. Kano, Y. Tanaka, T. Ogawa, M. Shimomura and T. Kunitake, Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible cis--trans isomerization of azobenzenes, Photochem. Photobiol. 34:323 (1981).

    Google Scholar 

  29. D. Balasubramanian, S. Subramani and C. Kumar, Modification of a model membrane structure by embedded photochrome, Nature 254: 252 (1975).

    Google Scholar 

  30. S. Barbaric and P. L. Luisi, Micellar solubilization of bio-polymers in organic solvents, J. Am. Chem. Soc. 103:4239 (1981).

    Google Scholar 

  31. K. Martinek and I. V. Berezin, Artificial light-sensitive enzymatic systems as chemical amplifiers of weak light signals, Photochem. Photobiol. 29:637 (1979).

    Google Scholar 

  32. I. Karube, Y. Nakamoto and S. Suzuki, Photocontrol of urease activity in spiropyran collagen membrane, Biochim. Biophys. Acta 445:774 (1976).

    Google Scholar 

  33. Y. Nakamoto, I. Karube, S. Terawaki and S. Suzuki, Photocontrol of lactate dehydrogenase-spiropyran collagen membrane, J. Solid-Phase Biochem. 1: 143 (1976).

    Google Scholar 

  34. Y. Nakamoto, I. Karube, S. Terawaki, M. Nishida and S. Suzuki, Photocontrol of trypsin-spirobenzopyran membrane activity, J. Ferment. Technol. 55:409 (1977).

    Google Scholar 

  35. I. Karube, I. Ishimori and S. Suzuki, Photocontrol of affinity chromatography. I. Trypsin purification by photosensitive soybean trypsin inhibitor (STI) gel, Anal. Biochem. 86:100 (1978).

    Google Scholar 

  36. I. Nakamoto, I. Karube, I. Kobayashi, M. Nishida and S. Suzuki, Amino acid esterification by a-chymotrypsin immobilized in spiropyran membrane, Arch. Biochem. Biophys. 193:117 (1979).

    Google Scholar 

  37. W. W. Cleland, Steady state kinetics, in: “The Enzymes”, P. D. Boyer, ed., vol. 2, Academic Press, New York (1970).

    Google Scholar 

  38. B. F. Erlanger, N. H. Wassermann, A. C. Cooper and R. J. Monk, Allosteric activation of the hydrolysis of specific substrates by chymotrypsin, Eur. J. Biochem. 61:287 (1976).

    Google Scholar 

  39. M. Aizawa, K. Namba and S. Suzuki, Photocontrol of enzyme activity of a-amylase, Arch. Biochem. Biophys. 180:41 (1977).

    Google Scholar 

  40. M. Aizawa, K. Namba and S. Suzuki, Light-induced enzyme activity changes associated with the photoisomerization of bound spiropyran, Arch. Biochem. Biophys. 182:305 (1977).

    Google Scholar 

  41. G. Montagnoli, E. Balestreri, L. Nannicini, A. Bellucci and M. Bracaloni, pH controlled diazo coupling of aldolase: selsctive formation of diazothioether chromophore and retention of enzyme activity, Int. J. Peptide Protein Res. 11:28 (1978).

    Google Scholar 

  42. S. Monti, G. Montagnoli and L. Nannicini, Isomerization of (Z)-arenediazo thioethers on aldolase and model compounds, J. Am. Chem. Soc. 99:3808 (1977).

    Google Scholar 

  43. G. Montagnoli, S. Monti, L. Nannicini and R. Felicioli, Azoaldolase photosensitivity, Photochem. Photobiol. 23:39 (1976).

    Google Scholar 

  44. G. Montagnoli, S. Monti, L. Nannicini, M. Ciovannitti and M. G. Ristori, Photomodulation of azoaldolase activity, Photochem. Photobiol. 27:43 (1978).

    Google Scholar 

  45. G. Montagnoli, S. Monti and L. Nannicini, Chemical and photochemical properties of the p-carboxybenzene diazothioether of N-acetyl-L-cysteine in water, Gazz. Chim. Ital. 105:559 (1975).

    Google Scholar 

  46. I. V. Berezin, S. D. Varfolomeev, A. M. Klibanov and K. Martinek, Intermediate compounds in enzyme catalysis and their kinetic investigation, Russ. Chem. Rev. 43: 363 (1974).

    Google Scholar 

  47. G. Van der Veen, R. Hoguet and W. Prins, Photoregulation of polymer conformation by photochromic moieties-II. Cationic and neutral moieties on an anionic polymer, Photochem. Photobiol. 19:197 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montagnoli, G. (1983). Conformational Models of Light Energy Utilization in Photoreceptive Systems. In: Montagnoli, G., Erlanger, B.F. (eds) Molecular Models of Photoresponsiveness. NATO Advanced Science Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0896-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0896-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0898-1

  • Online ISBN: 978-1-4757-0896-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics