Photochemical Processes Induced with Enzyme-Generated Triplet Species

  • Giuseppe Cilento
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)


Light may act as an energy source and, as such, may drive biosynthetic processes. Light may also act as a signal producing regulatory responses. Regarding the first of these two broad roles, it is certainly intriguing that there are several photochemical-like transformations which occur “in vivo” under conditions in which light is not available1–3. As for the second, if the regulatory role is environmentally dependent, it is obvious that there is no substitute for light; however, as we shall see, some sort of control is still potentially possible in the dark. The key point is that electronic energy can also be generated chemically and biochemically and can be transferred in such a manner as to induce photoprocesses. Chemiluminescent reactions have been known and studied for a long time, as have bioluminescent processes. However, in these processes, the excited species is generated in the singlet state, whereas excited species in the triplet state are potentially much more useful due to their longer lifetimes4.


Triplet State Indoleacetic Acid Rose Bengal Excited Species Biological Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.H. White and C.C. Wei, A possible role for chemically produced excited states in biology, Biochem.Biophys.Res.Commun. 39: 1219 (1970).CrossRefGoogle Scholar
  2. 2.
    G. Cilento, Excited electronic states in dark biological processes, Quart.Rev.Biophys. 6: 485 (1973).CrossRefGoogle Scholar
  3. 3.
    E.H. White, J.D. Miano, C.J. Watkins and E.J. Breaux, Chemically produced excited states, Ang.Chem.Int.Ed.Engl. 13: 229 (1974).Google Scholar
  4. 4.
    S.P. McGlynn, F.J. Smith and G. Cilento, Some aspects of the triplet state, Photochem.Photobiol. 3: 269 (1964).CrossRefGoogle Scholar
  5. 5.
    K.R. Kopecky and C. Mumford, Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane, Can.J.Chem. 47: 709 (1969).CrossRefGoogle Scholar
  6. 6.
    F. McCapra, I. Beheshti, A. Burford, R.A. Hann and K.A. Zaklika, Singlet excited states from dioxetanes decomposition, J. Chem.Soc.Chem.Commun. 24: 944 (1977).CrossRefGoogle Scholar
  7. 7.
    W. Adam and J.-C. Liu, An a-peroxylactone. Synthesis and chemiluminescence, J.Am.Chem.Soc. 94: 2894 (1972).CrossRefGoogle Scholar
  8. 8.
    W. Adam, (a) Determination of chemiexcitation yields in the thermal generation of electronic excitation from 1,2-dioxetanes, in: “Chemical and Biological Generation of Excited States”, W. Adam and G. Cilento, eds. pp. 115–152, Academic Press, New York, 1982. (b) Thermal generation of electronic excitation with hyperenergetic molecules, Pure Appl.Chem. 52: 2591 (1980).These reviews contain all pertinent references concerning the chemiexcitation yields in the thermal generation of electronic excitation from dioxetanes.Google Scholar
  9. 9.
    E.H. White, J. Wiecko and D.F. Roswell, Photochemistry without light, J.Am.Chem.Soc. 91: 5194 (1969).CrossRefGoogle Scholar
  10. 10.
    T.R. Darling and C.S. Foote, Thermal and photochemical decomposition of 3,4-dimethyl-3,4-di-n-butyl-1,2-dioxetane. Competitive generation of singlet and triplet 2-hexanone, J.Am.Chem,Soc. 96: 1625 (1974).CrossRefGoogle Scholar
  11. 11.
    H.E. Zimmerman and G.E. Keck, A photochemical rearrangement without light. Dioxetane effected photochemistry by direct intramolecular excitation, J.Am.Chem.Soc. 97: 3527 (1975).Google Scholar
  12. 12.
    G.B. Schuster, Chemiluminescence of organic peroxides.Conversion of gound state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism, Acc.Chem.Res. 12: 366 (1979).Google Scholar
  13. 13.
    G.B. Schuster and K.A. Horn, Chemically initiated electron-exchange luminescence, in “Chemical and Biological Generation of Excited States W. Adam and G. Cilento, eds., pp. 229–247, Academic Press, New York, 1982.CrossRefGoogle Scholar
  14. 14.
    G. Cilento: (a) Generation and transfer of triplet energy in enzymatic systems, Acc.Chem.Res. 13: 225 (1980); (b) Photo- biochemistry in the dark, Photochem.Photobiol.Rev. 5: 199 (1980); (c) Electronic excitation in dark biological processes. in “Chemical and Biological Generation of Excited States”, W. Adam and G. Cilento, eds. pp. 277–307, Academic Press, New York, 1982.Google Scholar
  15. 15.
    M.P. De Mello, S.M. De Toledo, M. Haun, G. Cilento and N. Durân, Excited indole-3-aldehyde from the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. Reaction with and energy tra’ sfer to transfer ribonucleic acid, Biochemistry 19: 5270 (1380)Google Scholar
  16. 16.
    E.J.H. Bechara, O.M.M. Faria Oliveira, N. Duran, R. Casadei de Baptista and G. Cilento, Peroxidase catalyzed generation of triplet acetone, Photochem.Photobiol. 30: 101 (1979).CrossRefGoogle Scholar
  17. 17.
    M.L. Saviotti and W.C. Galley, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc.Natl. Acad.Sci.USA 71: 4154 (1974).Google Scholar
  18. 18.
    S. Kishner, E. Trepman and W.C. Galley, Phosphorescence evidence for the role of solvent-protein interactions in the energetics of conformational flexibility of liver alcohol dehydrogenase, Can.J.Biochem. 57: 1299 (1979).Google Scholar
  19. 19.
    J. Domanus, G.B. Strambini and W.C. Galley, Heterogenity in the thermally-induced quenching of the phosphorescence of multi-tryptophan proteins, Photochem.Photobiol. 31: 15 (1980).Google Scholar
  20. 20.
    T. Wilson, Chemiluminescence in the liquid phase: thermal cleavag(of dioxetanes, in: Int.Rev.Sci.:Phys.Chem.Ser.Two 1975–1976 265 (1976).Google Scholar
  21. 21.
    T. Wilson and A.P. Schaap, The chemiluminescence from cis-diethox; 1,2-dioxetane. An unexpected effect of oxygen, J.Am.Chem.Soc. 93: 4126 (1971).CrossRefGoogle Scholar
  22. 22.
    N.J. Turro, P. Lechtken, G. Schuster, J. Orell, H.C. Steinmetzer and W. Adam, Indirect chemiluminescence by 1,2-dioxetanes. Evaluation of triplet-singlet excitation efficiencies. Long-range singlet-triplet energy transfer and an efficient triplet-singlet energy transfer, J.Am.Chem.Soc. 96: 1625 (1974).CrossRefGoogle Scholar
  23. 23.
    I.L. Brunetti, G. Cilento and L. Nassi, Energy transfer from enzymically generated triplet species to acceptors in micelles, submitted for publication.Google Scholar
  24. 24.
    J.T. Dubois and F. Wilkinson, Triplet state of benzene, J.Chem. Phys. 38: 2541 (1963).Google Scholar
  25. 25.
    E. Rivas-Suarez and G. Cilento, Quenching of enzyme generated acetone phosphorescence by indole compounds: stereospecific effects of D- and L-tryptophan.Photochemical-like effects, Biochemistry 20: 7329 (1981).Google Scholar
  26. 26.
    E.J.H. Bechara, unpublished results cited in O. Augusto and E.J. H. Bechara, Hemin catalyzed generation of triplet acetone, Biochim.Biophys.Acta 631: 203 (1980).Google Scholar
  27. 27.
    O.M.M. Faria Oliveira, M. Haun, N. Duran, P.J.O’Brien, C.R. O’Brien, E.J.H. Bechara and G. Cilento, Enzyme-generated electronically excited carbonyl compounds, J.Biol.Chem. 253: 4707 (1978).Google Scholar
  28. 28.
    M. Haun, N. Duran, 0. Augusto and G. Cilento, Model studies of the a-peroxidase system: formation of an electronically excited product, Arch.Biochem.Biophys. 200: 245 (1980).CrossRefGoogle Scholar
  29. 29.
    N. Duran, M. Haun, A. Faljoni and G. Cilento, Photochemical oxidation of chlorpromazine in the dark induced by enzymically generated triplet carbonyl compounds, Biochem.Biophys.Res. Commun. 81: 785 (1978).Google Scholar
  30. 30.
    J. Ricard and D. Job, Reaction mechanisms of indole-3-acetate degradation by peroxidase-a stopped-flow and low-temperature spectroscopic study, Eur.J.Biochem. 44: 359 (1974).Google Scholar
  31. 31.
    R. Nakajima and I. Yamazaki, The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases, J.Biol.Chem. 254: 872 (1979).Google Scholar
  32. 32.
    C.C.C. Vidigal, A. Faljoni-Alario, N. Duran, K. Zinner, Y. Shimizu and G. Cilento, Electronically excited species in the peroxidasecatalyzed oxidation of indoleacetic acid. Effect upon DNA and RNA, Photochem.Photobiol. 30: 195 (1979).CrossRefGoogle Scholar
  33. 33.
    M.P. De Mello, S.M. De Toledo, H. Aoyama, H.K. Sarkar, G. Cilento and N. Duran, Peroxidase generated triplet indole-3-aldehyde adds to uridine bases and excites the 4-thiouridine group in t-RNAPhe, Photochem.Photobiol. 36: 21 (1982).Google Scholar
  34. 34.
    Augusto and G. Cilento, Dark excitation of chlorophyll, Photochem.Photobiol. 30, 191 (1979).CrossRefGoogle Scholar
  35. 35.
    L. Nassi and G. Cilento, Red emission from chloroplasts elicited by enzyme generated triplet acetone and triplet indole-3aldehyde, to be published.Google Scholar
  36. 36.
    Augusto, G. Cilento, J. Jung and P.-S. Song, Phototransformation of phytochrome in the dark, Biochem.Biophys.Res.Commun. 83: 963 (1978).CrossRefGoogle Scholar
  37. 37.
    E. Rivas-Suarez, O. Augusto and G. Cilento, Quenching of enzyme--generated triplet acetone by 2-methyl-1,4-naphtoquinone, Photochem.Photobiol. 33: 279 (1981).Google Scholar
  38. 38.
    A. Faljoni-Alârio, M. Haun, M.E. Hoffmann, R. Meneghini, N. Duran and G. Cilento, Photochemical-like effects in DNA caused by enzymically energized triplet carbonyl compounds, Biochem. Biophys.Res.Commun. 80: 490 (1978).Google Scholar
  39. 39.
    R. Meneghini, M.E. Hoffmann, N. Duran, A. Faljoni and G. Cilento, DNA damage during the peroxidase catalyzed aerobic oxidation of isobutanal, Biochim.Biophys.Acta 518: 177 (1978).CrossRefGoogle Scholar
  40. 40.
    N. Duran, M. Haun, S.M. De Toledo, G. Cilento and E. Silva, Binding of riboflavin to lysozyme promoted by peroxidase generated triplet acetone, to be published.Google Scholar
  41. 41.
    I.L. Brunetti, E.J.H. Bechara, G. Cilento and E.H. White, Possible “in vivo” formation of lumicolchicines from colchicine by endogenously generated triplet species, Photochem.Photobiol. 36: 245 (1982).Google Scholar
  42. 42.
    N. Duran, Y. Makita and L. Innocentini, Peroxidase activity in human red cell: a biological model for excited state molecules generation, Biochem.Biophys.Res.Commun. 88: 642 (1979).Google Scholar
  43. 43.
    Y. Makita and N. Duran, Photobiochemistry in the dark: photohemolysis of red cells sensitized by chlorpromazine-bioenergized triplet acetone system, Biochem.Biophys.Res.Commun. 91: 427 (1979).Google Scholar
  44. 44.
    R. Schmidt, H. Kelm and H.-D. Brauer, The energy transfer from acetone in the triplet state to 9,10-dibromoanthracene. An investigation at high pressures, Ber.Bunsenges.Phys.Chem. 81: 402 (1977).CrossRefGoogle Scholar
  45. 45.
    T. Wilson and A.M. Halpern, A kinetic study of sensitized 9,10-dibromoanthracene fluorescence produced by energy transfer from triplet ketones 1. Acetophenone as donor, J.Am.Chem.Soc. 102! 7272 (1980).Google Scholar
  46. 46.
    N. Duran and G. Cilento, Long-range triplet-singlet energy transfer from enzyme generated triplet acetone to xanthene dyes Photochem.Photobiol. 32: 113 (1980).Google Scholar
  47. 47.
    E. Rivas-Suarez, L.H. Catalani, E.J.H. Bechara and G. Cilento, Quenching of chemically and enzymically generated triplet acetone by tyrosine and 3,5-dihalogenoderivatives, Photochem. Photohiol in press.Google Scholar
  48. 48.
    H. Roigth and R.M. Leblanc, Processes photophysiques dans la molecule de colchicine, Can.J.Chem. 51: 2821 (1973).CrossRefGoogle Scholar
  49. 49.
    N.J. Sargentini and K.C. Smith, Much of the spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: implications for spontaneous mutagenesis, Carcinogenes 2: 863 (1981).Google Scholar
  50. 50.
    B.F. Erlanger, Photoregulation of biologically active macromolecules, Annu Rev.Biochem. 45: 267 (1976).Google Scholar
  51. 51.
    B.F. Erlanger, Photoregulation of macromolecules-model systems, Abstr.Int.Congr.Photobiol. 8th, (1980), 5.Google Scholar
  52. 52.
    W. Shropshire, Photomorphogenesis, in: “The Science of Photo-biology”, K.C. Smith, ed., pp. 281–312, Plenum Press, New York.Google Scholar
  53. 53.
    A. Rich and S.H. Kim, The three dimensional structure of transfer RNA, Sci.Am. 238: 52 (1978).Google Scholar
  54. 54.
    A. Favre and M. Yaniv, Introduction of an intramolecular fluorescent probe in E.coli t-RNAlal, FEBS Lett 17: 236 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Giuseppe Cilento
    • 1
  1. 1.Department of BiochemistryInstituto de Química Universidade de São PauloSão PauloBrazil

Personalised recommendations