Protein Phosphorylation as an Adaptive Mechanism in Photosynthesis and Vision

  • John Bennett
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

Many photoreceptors are composed of a chromophore linked covalently or non-covalently to a specific polypeptide. Examples include rhodopsin, bacteriorhodopsin, phytochrome and the chlorophyll-binding proteins of the chloroplast. In each case the polypeptide plays an essential role in photoreception, both by influencing the absorption spectrum of the chromophore and by participating in the transduction of the stimulus. Since each protein contributes to the first step of an energy transduction pathway, it is reasonable to expect that it will be subject to some form of regulation, just as the first or committing enzyme of a. metabolic pathway is usually subject to regulation. The discoveries that rhodopsin1,2 and the light-harvesting chlorophyll a/b complex (LHC)3 are reversibly phosphorylated in response to light suggest that this may in fact be the case. In this article I review the roles of these two proteins in vision and photosynthesis, respectively, and attempt to assess the significance of their phosphorylation.

Keywords

Protein Phosphorylation Thylakoid Protein Diffusible Transmitter PSII Unit Rhodopsin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kuhn and W.J. Dreyer, FEBS Lett. 20: 1 (1972).CrossRefGoogle Scholar
  2. 2.
    D. Bownds, X. Dawes, J. Miller and M. Stahlman, Nature New Biol. 237: 125 (1972).Google Scholar
  3. 3.
    J. Bennett, Nature 269:344 (1977)Google Scholar
  4. 4.
    R. Clayton, “Photosynthesis. Physical mechanisms and chemical patterns”, Cambridge University Press, Cambridge (1980).Google Scholar
  5. 5.
    J. Bennett, Trends Biochem Sci. 4: 268 (1979).CrossRefGoogle Scholar
  6. 6.
    N. Murata, Biochim, Biophys Acta 172:242 (1969)Google Scholar
  7. 7.
    C. Bonova.ntura. and J. Myers, Biochim, Biophys. Acta. 189:366 (1969).Google Scholar
  8. 8.
    J. Myers, Annu, Rev. Plant Physiol. 22: 289 (1971).CrossRefGoogle Scholar
  9. 9.
    W.S. Chow, A. Telfer, D.J. Chapman and J. Barber, Biochim. Biophys. Acta 638:60 (1981).Google Scholar
  10. 10.
    J. Barber, D.N.H. Horler and D.J. Chapman, in: “Plants and the Daylight Spectrum”, H. Smith, ed,, Academic Press, London (1981).Google Scholar
  11. 11.
    J.M. Anderson and B. Andersson, Trends Biochem. Sci. 7: 288 (1982).CrossRefGoogle Scholar
  12. 12.
    L.A. Staehelin, J. Cell Biol. 71:136 (1976).Google Scholar
  13. 13.
    W.L. Butler, in: “Encyclopedia. of Plant Physiology New Series, Volume 5”, A. Trebst and M. Avron, eds., Springer-Verlag, Berlin (1977).Google Scholar
  14. 14.
    L.A. Staehelin and C.J. Arntzen, in: “Chlorophyll Organization and Energy Transfer in Photosynthesis”, Ciba. Foundation Symposium 61 (new series), Excerpta Medica, Amsterdam (1979).Google Scholar
  15. 15.
    J. Barber, FEBS Lett. 118: 1 (1980).CrossRefGoogle Scholar
  16. 16.
    A.R. Portis, Plant Physiol. 67: 985 (1981).CrossRefGoogle Scholar
  17. 17.
    G. Ben-Hayyim and G.H. Krause, Archs Biochem. Biophys. 202:546 (1980).Google Scholar
  18. 18.
    J. Bennett, Eur. J. Biochem. 99: 133 (1979).CrossRefGoogle Scholar
  19. 19.
    K.E. Steinback, S. Bose and D.J. Kyle, Arch Biochem. Biophys. 216: 356 (1982).Google Scholar
  20. 20.
    G. Owens and I. Ohad, J. Cell Biol. 93: 712 (1982).CrossRefGoogle Scholar
  21. 21.
    J.E. Mullet, T.O. Baldwin and C.J. Arntzen, in: “6th Intern. Cong. Photosyn.”, G. Akoyunoglou, ed., Balabam Publishing Company, Philadelphia (1981).Google Scholar
  22. 22.
    K.E. Steinback, J.J. Burke and C.J. Arntzen, Archs Biochem. Biophys. 195:546 (1979).Google Scholar
  23. 23.
    I.J. Ryrie, J.M. Anderson and D.J. Goodchild, Eur, J. Biochem. 107: 345 (1980).Google Scholar
  24. 24.
    J.E. Mullet and C.J. Arntzen, Biochem. Biophys. Acta 589:100 (1980).Google Scholar
  25. 25.
    J. Bennett, Eur. J. Biochem, 104.85 (1980).Google Scholar
  26. 26.
    J. Bennett, FEUS Lett. 103::M2 (1979).Google Scholar
  27. 27.
    R. Alfonzo, N. Nelson and E. Racker, Plant Physiol. 65: 730 (1980).CrossRefGoogle Scholar
  28. 28.
    J.F. Allen, J. Bennett, K.E. Steinback and C.J. Arntzen, Nature 291: 21 (1981).CrossRefGoogle Scholar
  29. 29.
    J.F. Allen and P, Horton, Biochim, Biophys. Acta 638:290 (1981).Google Scholar
  30. 30.
    P. Horton, J.F. Allen, M.T. Black and J. Bennett, FEBS Lett. 125:193 (1981).Google Scholar
  31. 31.
    J. Bennett, K.E. Steinback and C.J. Arntzen, Proc. Natl. Acad. Sci. U.S.A. 77: 5253 (1980).CrossRefGoogle Scholar
  32. 32.
    P. Horton and M.T. Black, FEBS Lett. 119: 141 (1980).CrossRefGoogle Scholar
  33. 33.
    P. Horton and M.T. Black, Biochim. Biophys, Acta 635:53 (1981).Google Scholar
  34. 34.
    A. Telfer and J. Barber, FEBS Lett 129: 161 (1981).CrossRefGoogle Scholar
  35. 35.
    P, Horton and M.T. Black, Biochim, Biophys. Acta 680:22 (1982).Google Scholar
  36. 36.
    W.L. Butler, Annu. Rev. Plant Physiol. 29: 345 (1978).CrossRefGoogle Scholar
  37. 37.
    J.W. Farchaus, W.R. Widger, W.A. Cramer and R.A. Dilley, Archs. Biochem. Biophys. 217:362 (1982).Google Scholar
  38. 38.
    J. Bennett, J.P. Markwell, M. Skrdla and J.P. Thornber, FEBS Lett. 131: 325 (1981).CrossRefGoogle Scholar
  39. 39.
    D.J. Kyle, P. Haworth and C.J. Arntzen, Biochim. Biophys, Acta 680:336 (1982).Google Scholar
  40. 40.
    P. Haworth, D.J. Kyle and C.J. Arntzen, Biochim, Biophys. Acta. 680:343 (1982).Google Scholar
  41. 41.
    L.A. Staèhelin, D.J. Kyle and C.J. Arntzen, Plant Physiol. 69:s69 (1982).Google Scholar
  42. 42.
    J. Biggins, Biochim. Biophys. Acta 679:479 (1982).Google Scholar
  43. 43.
    J.P. Markwell, N. Baker and J.P. Thornber, FEBS Lett. 142: 171 (1982).CrossRefGoogle Scholar
  44. 44.
    J.F. Allen and J. Bennett, FEBS Lett. 123: 67 (1981).CrossRefGoogle Scholar
  45. 45.
    G. Wald, Science 162: 230 (1968).CrossRefGoogle Scholar
  46. 46.
    R.R. Birge, Annu. Rev. Biophys. Bioeng. 10: 315 (1981).CrossRefGoogle Scholar
  47. 47.
    P.P.M. Schnetka.mp, Biochemistry 20: 2449 (1981).Google Scholar
  48. 48.
    J.B.C. Findlay, A. Moore and D.J.C. Pappin, FEBS Lett. 138: 67 (1982).CrossRefGoogle Scholar
  49. 49.
    P.A. Hargrave, S-L. Fong, J.H. McDowell, M.T. Mas, D.R. Curtis, J.K. Wang, E. Juszcza.k and D.P. Smith, Neurochem. Int. 1: 231 (1980).CrossRefGoogle Scholar
  50. 50.
    E. Eliopoulos, A.J. Geddes, M. Brett, D.J.C. Pappin and J.B.C. Findlay, Int. J. Biol. Macromol. 4:263 (1982).Google Scholar
  51. 51.
    J.B.C. Findlay, M. Brett and D.J.C. Pappin, Nature 293: 314 (1981).CrossRefGoogle Scholar
  52. 52.
    H. Kühn, 0. Mommertz and P.A. Hargrave, Biochim. Biophys. Acta. 679:95 (1982).Google Scholar
  53. 53.
    H. Kühn, Biochemistry 17: 4389 (1978).CrossRefGoogle Scholar
  54. 54.
    H. Kühn, Nature 283: 587 (1980).CrossRefGoogle Scholar
  55. 55.
    U. Wilden and H. Kühn, Biochemistry 21: 3014 (1982).CrossRefGoogle Scholar
  56. 56.
    H. Kühn, J.H. Cook and W. J. Dreyer, Biochemistry 12: 2495 (1973).CrossRefGoogle Scholar
  57. 57.
    R.N. Frank and S.M. Buzney, Biochemistry 14: 5110 (1975).Google Scholar
  58. 58.
    J.H. McDowell and H. Kühn, Biochemistry 16: 4054 (1977).Google Scholar
  59. 59.
    J. Hermolin, M.A. Kavell, H.E. Hammond, M.D. Bownds, J. Gen. Physiol. 79: 633 (1982).CrossRefGoogle Scholar
  60. 60.
    A.S. Polans, J. Hermolin and M.D. Bownds, J. Gen. Physiol. 74:595 (1979).Google Scholar
  61. 61.
    H. Kühn, Nature 250: 588 (1974).CrossRefGoogle Scholar
  62. 62.
    H. Kühn and P.A. Hargrave, Biochemistry 20: 2410 (1981).CrossRefGoogle Scholar
  63. 63.
    L. Stryer, B. Hurley and B.K-K. Fung, Curr. Top. Membr. Transp. 15:93 (1981).Google Scholar
  64. 64.
    M.W. Bitensky, G.L. Wheeler, A. Yamazaki, M.M. Rasenick and P.J. Stein, Curr. Top. Membr. Transp. 15: 237 (1981).CrossRefGoogle Scholar
  65. 65.
    J.J. Keirns, N. Miki, M.W. Bitensky and M. Keirns, Biochemistry 14: 2760 (1975).CrossRefGoogle Scholar
  66. 66.
    N. Bennett, Eur. J. Biochem. 123: 133 (1982).CrossRefGoogle Scholar
  67. 67.
    A. Sitaramayya, N. Virmaux and P. Mandel, Neurochem. Res. 2: 1 (1977).CrossRefGoogle Scholar
  68. 68.
    P.A. Liebman and E.N. Pugh. Curr. Top. Membr. Transp. 15: 157 (1981).Google Scholar
  69. 69.
    J.S. Pober and M.N. Bitensky, Adv. Cyclic Nucleotide Res. 11: 265 (1979).Google Scholar
  70. 70.
    G. Matthews and D.A. Baylor, Curr. Top. Membr. Transp. 15: 3 (1981).CrossRefGoogle Scholar
  71. 71.
    W.G. Owen and V. Torre, Curr. Top. Membr. Transp. 15: 33 (1981).CrossRefGoogle Scholar
  72. 72.
    M.L. Woodruff and M.D. Bownds, J. Gen. Physiol. 73:629 (1979).Google Scholar
  73. 73.
    W.H. Miller, J. Gen. Physiol. 80:103 (1982).Google Scholar
  74. 74.
    M.D. Bownds, Curr. Top. Membr. Transp. 15: 203 (1981).Google Scholar
  75. 75.
    T.G. Ebrey, P. Kilbride, J.B. Hurley, R. Calhoon and M. Tsuda, Carr. Top. Membr. Transp. 15:121 (1981).Google Scholar
  76. 76.
    H. Kühn, Curr. Top. Membr. Transp. 15: 171 (1981).CrossRefGoogle Scholar
  77. 77.
    H. Kühn, N. Bennett, M. Michel-Villaz and M. Chabre, Proc. Natl. Acad. Sci. U.S.A. 78: 6873 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • John Bennett
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations