Skip to main content

Proposed Mechanism for Photomodulation of Carbon Metabolism Enzyme Activity in Chloroplasts and Cyanobacteria

  • Chapter

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 68))

Abstract

When light activation of one of the Calvin cycle enzymes was first observed some 23 years ago (1) almost every plant physiologist was sure that protein synthesis rather than post translational covalent modification was responsible. Now it is almost universally accepted that light does control the activity of reductive pentose phosphate cycle enzymes, probably through covalent modification involving protein cys groups. But the mechanism, and indeed the function, of light modulation remains the subject of debate. Here I will consider briefly the scope of light modulation of carbon metabolism enzymes in green plants, and then in more detail proposals for the mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CAM:

Crassulacean acid metabolism

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

DTT:

dithiothreitol

FeS:

iron sulfur

References

  1. H. Ziegler and I. Ziegler, Der Einfluss der Belichtung auf die NADP+ -abhangige-Clycerinaldehyd-3-phosphate-dehydrogenase, Planta 65: 369 (1965).

    Article  Google Scholar 

  2. L. E. Anderson, Interaction between photochemistry and activity of enzymes, in: “Encyclopedia of Plant Physiology, New Series”, Vol. 6, M. Gibbs and E. Latzko, eds., Springer Verlag, Berlin (1979).

    Google Scholar 

  3. L. E. Anderson, A. R. Ashton, D. Ben-Bassat, A. Habib Mohamed and R. Scheibe, Modulation of chloroplast enzyme activity: The Light-Effect-Mediator (LEM) System, What’s New Plant Physiol. 11: 37 (1980).

    Google Scholar 

  4. L. E. Anderson, A. H. Mohamed, A. R. Ashton, R. Scheibe, T. Brennan and D. Ben-Bassat, Light modulation: The light effect mediator (LEM) system, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, C. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).

    Google Scholar 

  5. L. E. Anderson, A. R. Ashton, A. H. Mohamed and R. Scheibe, Light/dark modulation of enzyme activity in photosynthesis, BioScience 32: 103 (1982).

    Article  Google Scholar 

  6. B. B. Buchanan, R. A. Wolosiuk and P. Schurmann, The role of light in the activation of enzymes in photosynthesis, What’s New Plant Physiol. 10: 1 (1979).

    Google Scholar 

  7. B. B. Buchanan, R. A. Wolosiuk and P. Schurmann, Thioredoxin and enzyme regulation, Trends Biochem. Sci. 4: 93 (1979).

    Google Scholar 

  8. B. B. Buchanan, Role of light in the regulation of chloroplast enzymes, Ann. Rev. Plant Physiol. 31: 341 (1980).

    Article  Google Scholar 

  9. B. B. Buchanan, Photosynthetic enzyme regulation by the ferredoxin/thioredoxin and the ferralterin mechanism, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).

    Google Scholar 

  10. I. M. Rao and L. E. Anderson, Light modulation of enzymes in epidermis: Possible involvement of light activation of enzymes in stomatal opening, Plant Physiol. 69:S-128 (1982).

    Google Scholar 

  11. M. D. Hatch, C. R. Slack and T. A. Bull, Light-induced changes in the content of some enzymes of the C-4-dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis, Phytochem. 8: 697 (1969).

    Article  Google Scholar 

  12. S. A. Charles and B. Halliwell, Light activation of fructose bisphosphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide, Planta 151: 242 (1981).

    Article  Google Scholar 

  13. W. A. Laing, M. Stitt and H. W. Heldt, Control of CO2 fixation. Changes in the activity of ribulosephosphate kinase and fructose- and sedoheptulose-bisphosphatase in chloroplasts, Biochim. Biophys. Acta 637: 348 (1981).

    Article  Google Scholar 

  14. R. Tischner and A. Huttermann, Regulation of glutamine synthetase by light during nitrogen deficency in synchronous Chlorella sorokiniana, Plant Physiol. 66: 805 (1980).

    Article  Google Scholar 

  15. J. V. Cullimore, Glutamine synthetase of Chlamydomonas: Rapid reversible deactivation, Planta 152: 587 (1981).

    Article  Google Scholar 

  16. P. Rowell, M. J. A. M. Sampaio, J. K. Ladha and W. D. P. Stewart, Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH3, Arch. Microbiol. 120: 195 (1979).

    Google Scholar 

  17. A. N. Nishizawa, R. A. Wolosiuk and B. B. Buchanan, Chloroplast phenylalanine ammonia-lyase from spinach leaves, Planta 145: 7 (1979).

    Article  Google Scholar 

  18. J. D. Mills and G. Hind, Light-induced Mg2+ ATPase activity of coupling factor in intact chloroplasts, Biochim. Biophys. Acta 547: 455 (1979).

    Article  Google Scholar 

  19. J. D. Mills, P. Mitchell and P. Schurmann, Modulation of coupling factor ATPase activity in intact chloroplasts: The role of the thioredoxin system, FEBS Lett. 112: 173 (1980).

    Article  Google Scholar 

  20. J. D. Mills, P. Mitchell and P. Schurmann, The role of the thioredoxin system in the modulation of coupling factor ATPase activity in intact chloroplasts, in: “Photosynthesis II. Electron Transport and Photophosphorylation”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).

    Google Scholar 

  21. J. D. Mills and P. Mitchell, Modulation of coupling factor ATPase activity in intact chloroplasts: Reversal of thiol modulation in the dark, Biochim. Biophys. Acta 679: 75 (1982).

    Article  Google Scholar 

  22. Y. Shahak, Activation and deactivation of H+-ATPase in intact chloroplasts, Plant Physiol. 70: 87 (1982).

    Article  Google Scholar 

  23. S. Muto, S. Miyachi, H. Usuda, G. E. Edwards and J. A. Bassham, Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves, Plant Physiol. 68: 324 (1981).

    Article  Google Scholar 

  24. T.-A. Ono and Y. Inoue, Photoactivation of the water-oxidation system in isolated intact chloroplasts prepared from wheat leaves grown under intermittent flash illumination, Plant Physiol. 69: 1418 (1982).

    Article  Google Scholar 

  25. S. P. Robinson, Light stimulates glycerate uptake by spinach chloroplasts, Biochem. Biophys. Res. Commun. 106: 1027 (1982).

    Article  Google Scholar 

  26. Y. W. Kow, D. A. Smyth and M. Gibbs, Oxidation of reduced pyridine nucleotide by a system using ascorbate and hydrogen peroxide from plants and algae, Plant Physiol. 69: 72 (1982).

    Article  Google Scholar 

  27. H. Nakamoto and T. Sugiyama, Partial characterization of the in vitro activation of inactive pyruvate,Pi dikinase from darkened maize leaves, Plant Physiol. 69: 749 (1982).

    Article  Google Scholar 

  28. H. Ziegler, I. Ziegler and H.-J. Schmidt-Clausen, Die lichtinduzierte aktivitatssteigerung der NADP+-abhangigen Glycerinaldehyd-3-phosphat-Dehydrogenase. VII. Untersuchungen an Ceramium rubrum, Planta 81: 169 (1968).

    Article  Google Scholar 

  29. M. Avron and M. Gibbs, Properties of phosphoribulokinase of whole chloroplasts, Plant Physiol. 53: 136 (1974).

    Article  Google Scholar 

  30. L. E. Anderson and M. Avron, Light modulation of enzyme activity in chloroplasts: Generation of membrane-bound vicinal dithiol groups by photosynthetic electron transport, Plant Physiol. 57: 209 (1976).

    Article  Google Scholar 

  31. M. L. Champigny and E. Bismuth, Role of photosynthetic electron transfer in light activation of Calvin cycle enzymes, Physiol. Plant. 36: 95 (1976).

    Article  Google Scholar 

  32. R. C. Leegood and D. A. Walker, Modulation of fructose bisphosphatase activity in intact chloroplasts, FEBS Lett. 116: 21 (1980).

    Article  Google Scholar 

  33. R. C. Leegood and D. A. Walker, Regulation of fructose-1,6-bisphosphatase activity in intact chloroplasts: Studies on the mechanism of inactivation, Biochim. Biophys. Acta 593: 362 (1980).

    Article  Google Scholar 

  34. L. Mve Akamba and L. E. Anderson, Light modulation of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase by photosynthetic electron flow in pea chloroplasts, Plant Physiol. 67: 197 (1981).

    Article  Google Scholar 

  35. G. F. Wildner, The regulation of glucose-6-phosphate dehydrogenase in chloroplasts, Z. Naturforsch. 30c: 756 (1975).

    Google Scholar 

  36. A. H. Mohamed and L. E. Anderson, Extraction of chloroplast light effect mediator(s) and reconstitution of light activation of NADP-linked malate dehydrogenase, Arch. Biochem. Biophys. 209: 606 (1981).

    Article  Google Scholar 

  37. T. C. Johnson, B. B. Buchanan and R. Malkin, Photosynthetic electron solubilized plastocyanin, FEBS Lett. 133: 296 (1981).

    Article  Google Scholar 

  38. A. R. Ashton and L. E. Anderson, Resolution of the lightdependent modulation system of pea chloroplasts, Biochim. Biophys. Acta 638: 242 (1981).

    Article  Google Scholar 

  39. C. Lara, A. de la Torre and B. B. Buchanan, A new protein factor functional in the ferredoxin-independent light activation of chloroplast fructose 1,6-bisphosphatase, Biochem. Biophys. Res. Commun. 93: 544 (1980).

    Article  Google Scholar 

  40. C. Lara, A. de la Torre and B. B. Buchanan, Ferralterin: an iron-sulfur protein functional in enzyme regulation in photosynthesis, Biochem. Biophys. Res. Commun. 94: 1334 (1980).

    Article  Google Scholar 

  41. C. Lara, A. de la Torre and B. B. Buchanan, Some properties of ferralterin: an iron-sulfur protein functional in enzyme regulation in photosynthesis, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).

    Google Scholar 

  42. A. de la Torre, C. Lara, B. C. Yee, R. Malkin and B. B. Buchanan, Physiochemical properties of ferralterin, a regulatory iron-sulfur protein functional in oxygenic photosynthesis, Arch. Biochem. Biophys. 213: 545 (1982).

    Article  Google Scholar 

  43. B. B. Buchanan, P. P. Kalberer and D. I. Arnon, Ferredoxin-activated fructose diphosphatase in isolated chloroplasts, Biochem. Biophys. Res. Commun. 29: 74 (1967).

    Article  Google Scholar 

  44. P. Schurmann, R. A. Wolosiuk, V. D. Breazeale and B. B. Buchanan, Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts, Nature 263: 257 (1976).

    Article  Google Scholar 

  45. A. de la Torre, C. Lara, R. A. Wolosiuk and B. B. Buchanan, Ferredoxin-thioredoxin reductase: A chromophore-free protein of chloroplasts, FEBS Lett. 107: 141 (1979).

    Article  Google Scholar 

  46. P. Schurmann, The ferredoxin/thioredoxin system of spinach chloroplasts. Purification and characterization of its components, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, C. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).

    Google Scholar 

  47. N. A. Crawford, B. C. Yee and B. B. Buchanan, Thioredoxin specific ferredoxin-thioredoxin reductases from corn leaves, Plant Physiol. 69:S-52 (1982).

    Google Scholar 

  48. B. C. Yee, A. de la Torre, N. A. Crawford, C. Lara, D. E. Carlson and B. B. Buchanan, The ferredoxin/thioredoxin system of enzyme regulation in a cyanobacterium, Arch. Microbiol. 130: 14 (1981).

    Google Scholar 

  49. K. E. Hammel and B. B. Buchanan, Thioredoxin and ferredoxin-thioredoxin reductase activity occur in a fermentative bacterium, FEBS Lett. 130: 88 (1981).

    Article  Google Scholar 

  50. J.-M. Soulie, J. Buc, J.-C. Meunier, J. Pradel and J. Ricard, Molecular properties of chloroplastic thioredoxin f and the photoregulation of the activity of fructose 1,6-bisphosphatase, Eur. J. Biochem. 119: 497 (1981).

    Article  Google Scholar 

  51. R. Scheibe, Thioredoxinm in pea chloroplasts: Concentration and redox state under light and dark conditions, FEBS Lett. 133: 301 (1981).

    Article  Google Scholar 

  52. R. A. Wolosiuk, N. A. Crawford, B. C. Yee and B. B. Buchanan, Isolation of three thioredoxins from spinach leaves, J. Biol. Chem. 254: 1627 (1979).

    Google Scholar 

  53. N. A. Crawford, B. C. Yee, A. N. Nishizawa and B. B. Buchanan, Occurence of cytoplasmic f- and m-type thioredoxins in leaves, FEBS Lett. 104: 141 (1979).

    Article  Google Scholar 

  54. P. Schurmann, K. Maeda and A. Tsugita, Isomers in thioredoxins of spinach chloroplasts, Eur. J. Biochem. 116: 37 (1981).

    Article  Google Scholar 

  55. T. Kagawa and M. D. Hatch, Regulation of C-4 photosynthesis: Characterization of a protein factor mediating the activation and inactivation of NADP-Malate dehydrogenase, Arch. Biochem. Biophys. 184: 290 (1977).

    Article  Google Scholar 

  56. A. Schmidt, Isolation of two thioredoxins from the cyanobacterium Synechococcus 6301, Arch. Microbiol. 127: 259 (1980).

    Google Scholar 

  57. A. Schmidt, The role of thioredoxins for enzyme regulation in cyanobacteria, in: “Biology of Inorganic Nitrogen and Sulfur”, H. Bothe and A. Trebst, eds., Springer-Verlag, Berlin (1981).

    Google Scholar 

  58. M. D. Hatch and C. R. Slack, Studies of the mechanism of activation and inactivation of pyruvate, Pi dikinase, Biochem. J. 112: 549 (1969).

    Google Scholar 

  59. T. Sugiyama, Proteinaceous factor reactivating and inactive form of pyruvate,Pi dikinase isolated from dark-treated maize leaves, Plant Cell Physiol. 15: 723 (1974).

    Google Scholar 

  60. E. Yamamoto, T. Sugiyama and S. Miyachi, Action spectrum for light activation of pyruvate,Pi dikinase in maize leaves, Plant Cell Physiol. 15: 987 (1974).

    Google Scholar 

  61. T. Sugiyama and M. D. Hatch, Regulation of C-4 photosynthesis: Inactivation of pyruvate,Pi dikinase in leaf and chloroplast extract in relation to dark/light regulation in vivo, Plant Cell Physiol. 22: 115 (1981).

    Google Scholar 

  62. R. Scheibe and E. Beck, On the mechanism of activation by light of the NADP-dependent malate dehydrogenase in spinach chloroplasts, Plant Physiol. 64: 744 (1979).

    Article  Google Scholar 

  63. R. Alscher-Herman, Chloroplast alkaline FBPase exist in a membrane-bound form, Plant Physiol. (in press).

    Google Scholar 

  64. B. Muller, I. Ziegler and H. Ziegler, Lichtinduzierte, reversible Aktivitatssteigerung der NADP-abhangigen Clycerinaldehyl-3-phosphat-Dehydrogenase in Chloroplasten: Zum Mechanismus der reaction, Eur. J. Biochem. 9: 101 (1969).

    Article  Google Scholar 

  65. B. Muller, On the mechanism of the light-induced activation of the NADP-dependent glyceraldehyde phosphate dehydrogenase, Biochim. Biophys. Acta 205: 102 (1970).

    Article  Google Scholar 

  66. I. Ziegler, On the mechanism of activation of ribulose-5-P kinase in isolated chloroplasts, in: “Proceedings of the Ilnd International Congress on Photosynthesis Research”, G. Forti, M. Avron and A. Melandri, eds., Dr. N. V. Junk, The Hague (1972).

    Google Scholar 

  67. K. Lendzian and J. A. Bassham, Regulation of glucose 6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios, Biochim. Biophys. Acta 396: 260 (1975).

    Article  Google Scholar 

  68. K. J. Lendzian, Interactions between magnesium ions, pH, glucose-6-phosphate, and NADPH/NADP+ ratios in modulation of chloroplast glucose-6-phosphate dehydrogenase in vitro, Planta 141: 105 (1978).

    Article  Google Scholar 

  69. K. J. Lendzian, Modulation of glucose-6-phosphate dehydrogenase by NADPH, NADP+ and dithiothreitol at variable NADPH/NADP+ ratios in an illuminated reconstituted spinach (Spinacia oleracea L.) chloroplast system, Planta 148: 1 (1980).

    Article  Google Scholar 

  70. L. E. Anderson and S. C. Nehrlich, Photosynthetic electron transport system controls cytoplasmic glucose-6-phosphate dehydrogenase activity in pea leaves, FEBS Lett. 76: 64 (1977).

    Article  Google Scholar 

  71. R. Scheibe and L. E. Anderson, Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast, Biochim. Biophys. Acta 636: 58 (1981).

    Article  Google Scholar 

  72. A. Pla and J. Lopez-Gorge, Thioredoxin/fructose-l,6-bisphosphatase affinity in the enzyme activation by the ferredoxin thioredoxin system, Biochim. Biophys. Acta 636: 113 (1981).

    Article  Google Scholar 

  73. T. Brennan and L. E. Anderson, Inhibition by catalase of darkmediated glucose-6-phosphate dehydrogenase activation in pea chloroplasts, Plant Physiol. 66: 815 (1980).

    Article  Google Scholar 

  74. A. N. Nishizawa and B. B. Buchanan, Enzyme regulation in C-4 photosynthesis: Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves, J. Biol. Chem. 256: 6119 (1981).

    Google Scholar 

  75. P. Schurmann and R. A. Wolosiuk, Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase, Biochim. Biophys. Acta 522: 130 (1978).

    Article  Google Scholar 

  76. R. A. Wolosiuk and B. B. Buchanan, Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system, Arch. Biochem. Biophys. 189: 97 (1978).

    Article  Google Scholar 

  77. R. E. Slovacek and S. Vaughn, Chloroplast sulfhydryl groups and the light activation of fructose-1,6-bisphosphatase, Plant Physiol. (in press).

    Google Scholar 

  78. L. E. Anderson and T.-C. Lim, Chloroplast glyceraldehyde 3-phosphate dehydrogenase: Light dependent change in the enzyme, FEBS Lett. 27: 189 (1972).

    Article  Google Scholar 

  79. L. E. Anderson, H.-M. Chin and V. K. Gupta, Modulation of chloroplast fructose-1,6-bisphosphatase activity by light, Plant Physiol. 64: 491 (1979).

    Article  Google Scholar 

  80. J. Pradel, J.-M. Soulie, J. Buc, J.-C. Meunier and J. Ricard, On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle, Eur. J. Biochem. 113: 507 (1981).

    Article  Google Scholar 

  81. B. B. Buchanan, P. Schurmann and P. P. Kalberer, Ferredoxin-activated fructose diphosphatase of spinach chloroplasts, J. Biol. Chem. 246: 5952 (1971).

    Google Scholar 

  82. L. E. Anderson and J. X. Duggan, Light modulation of glucose-6-phosphate dehydrogenase: its effects on the properties of the chloroplastic and cytoplasmic forms of the enzyme, Plant Physiol. 58: 135 (1976).

    Article  Google Scholar 

  83. D. Ben-Bassat and L. E. Anderson, Light induced release of bound glucose-6-phosphate dehydrogenase to the stroma in pea chloroplasts, Plant Physiol. 68: 279 (1981).

    Article  Google Scholar 

  84. L. E. Anderson, M. J. Hansen and J. B. Anderson, Light-dark modulation of phosphoglucomutase activity in pea leaf chloroplasts, Plant Physiol. 63:S-2 (1979).

    Google Scholar 

  85. L. E. Anderson, A. H. Mohamed, A. R. Ashton, R. Scheibe and M. 0. Duraini, Light modulation in chloroplasts: The light effect mediator system, in: “Proceedings, First International Conference on Thioredoxins”, P. Gadal and B. B. Buchanan, eds, in press.

    Google Scholar 

  86. S. C. Huber, Substrates and inorganic phosphate control: The light activation of NADP-glyceraldehyde-3 phosphate dehydrogenase and phosphoribulokinase in barley (Hordeum vulgare) chloroplasts, FEBS Lett. 92: 12 (1978).

    Article  Google Scholar 

  87. S. C. Huber, Effects of pH and other factors on the phosphate dependence of photosynthesis in spinach chloroplasts, Planta 149: 485 (1980).

    Article  Google Scholar 

  88. S. P. Robinson and D. A. Walker, The significance of light activation of enzymes during the inducation phase of photosynthesis in isolated chloroplasts, Arch. Biochem. Biophys. 202: 617 (1980).

    Article  Google Scholar 

  89. R. C. Leegood and D. A. Walker, Photosynthetic induction in cheat protoplasts and chloroplasts. Autocatalysis and light activation of enzymes, Plant Cell Environment 4: 59 (1981).

    Article  Google Scholar 

  90. S. A. Charles and B. Halliwell, Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts, Biochem. J. 200: 357 (1981).

    Google Scholar 

  91. W. Wirtz, M. Stitt and H. W. Heldt, Light activation of Calvin cycle enzymes as measured in pea leaves, FEBS Lett. 142: 223 (1982).

    Article  Google Scholar 

  92. T. Sugiyama and W. M. Laetsch, Occurence of pyruvate orthophosphate dikinase in the succulent plant, Kalanchoe daigremontiana Hamet. et. Perr., Plant Physiol. 56: 605 (1975).

    Article  Google Scholar 

  93. L. E. Anderson, Light inactivation of transaldolase in pea leaf chloroplasts, Biochem. Biophys. Res. Commun. 99: 1199 (1981).

    Article  Google Scholar 

  94. B. Heuer, M. J. Hansen and L. E. Anderson, Light modulation of phosphofructokinase in pea leaf chloroplasts, Plant Physiol. 69: 1404 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, L.E. (1983). Proposed Mechanism for Photomodulation of Carbon Metabolism Enzyme Activity in Chloroplasts and Cyanobacteria. In: Montagnoli, G., Erlanger, B.F. (eds) Molecular Models of Photoresponsiveness. NATO Advanced Science Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0896-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0896-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0898-1

  • Online ISBN: 978-1-4757-0896-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics