Advertisement

Molecular Biology of the Rhodobacter Sphaeroides Flagellum

  • R. Elizabeth Sockett
  • Jocelyn C. A. Foster
  • Judith P. Armitage
Part of the FEMS Symposium book series (FEMSS)

Abstract

The first experiments on the motility of bacteria were conducted by the German scientist Theodore Engelmann in the 1880’s. He cultured purple photosynthetic bacteria (probably Chromatium and Rhodospirillum species) from the River Rhine and noted that they swam rapidly around their illuminated environment in a series of stops, turns, and startsl. Since those times there has been considerable interest in the structure and function of flagella from non-photosynthetic bacteria but little interest in the flagella of photosynthetic species.

Keywords

Alternate Sigma Factor Flagellar Gene Purple Photosynthetic Bacterium Flagellar Motor Flagellar Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engelmann, T.W. 1883. Bacterium photometricum: An article on the comparitive physiology of the sense for light and colour. Pfluger’s Arch. Ges. Physiol. 30: 95–124.CrossRefGoogle Scholar
  2. 2.
    Armitage, J.P. and R.M. Macnab. 1987. Unidirectional, intermittent rotation of the flagellum of R. sphaeroides. J. Bacteriol. 169: 514–518PubMedGoogle Scholar
  3. 3.
    Armitage, J.P. and M.C.W. Evans. 1985. Control of the protonmotive force in Rhodopseudomonas sphaeroides in the light and dark and its effect on the initiation of flagellar rotation. Bioch. Biophys. Acta. 806: 42–55.CrossRefGoogle Scholar
  4. 4.
    Evans, M.C.W. and J.P. Armitage. 1985. Initiation of flageller rotation in Rhodopseudomonas sphaeroides. FEES Lett. 186: 93–97.CrossRefGoogle Scholar
  5. 5.
    Sockett, R.E., J.P. Armitage and M.C.W.Evans. 1987. Methylation -independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum. J. Bacteriol. 169: 5808–5814.PubMedGoogle Scholar
  6. 6.
    Hazelbauer, G.L. 1988. The bacterial chemosensory system. Can. J. Microbiol. 34: 466–474.PubMedCrossRefGoogle Scholar
  7. 7.
    Hess, J.F., K. Oosawa, N. Kaplan and M.I. Simon. 1988. Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53: 79–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Inamine, G.S., P.A. Reilly and R.A. Neiderman. 1983. Differential protein insertion into developing photosynthetic membrane regions of Rhodopseudomonas sphaeroides. J. Cell. Biochem. 24: 69–77.CrossRefGoogle Scholar
  9. 9.
    Kiley, P.J. and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides Micro. Revs. 52: 50–69.Google Scholar
  10. 10.
    Huguenel, E. and A. Newton. Isolation of flagellated membrane vesicles from Caulobacter crescentus cells. Proc. Natl Acad. Sci. USA. 81: 3409–3413.Google Scholar
  11. 11.
    Simon, R., U. Priefer, and A. Puhler. 1983. Vector plasmids for in vivo and in vitro manipulations of Gram negative bacteria. p 98–106. In A. Puhler (ed) “Molecular genetics of bacterial-plant interactions”. Springer- Verlag KG, Berlin.CrossRefGoogle Scholar
  12. 12.
    Armstrong, J.B., J. Adler, and M.M. Dahl. 1967. Non chemotactic mutants of Escherichia coli. J. Bacteriol. 93: 390–398.PubMedGoogle Scholar
  13. 13.
    Helmann, J.D. and M.J. Chamberlin. 1987. DNA sequence analysis suggests that expression of the flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternate sigma factor. Proc. Natl. Acad. Sci. USA 84: 6422–6424.PubMedCrossRefGoogle Scholar
  14. 14.
    Allen, L.N., and Hanson, R.S. 1985. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J. Bacteriol. 161: 955–962.PubMedGoogle Scholar
  15. 15.
    Silverman, M., P. Matsumura, and M. Simon. 1976. The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc. Natl. Acad. Sci. USA 73: 3126–3130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Elizabeth Sockett
    • 1
  • Jocelyn C. A. Foster
    • 1
  • Judith P. Armitage
    • 1
  1. 1.Microbiology Unit, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations