Skip to main content

Part of the book series: FEMS Symposium ((FEMSS))

Abstract

Motile bacteria actively swim about their environment, randomly changing direction every few seconds. When faced with a gradient of a chemical they alter the frequency of direction changing to bias their overall direction towards a favourable environment. Bacteria are too small to sense any change in concentration across their body length, and therefore environmental sampling must occur by temporal comparison. A bacterium such as Rhodobacter sphaeroides, living under conditions where any one of many different growth parameters could be limiting, must be able to sense and respond to changes in different metabolites, light intensity and wavelength, oxygen and other terminal electron acceptors and balance these different sensory signals to give an integrated overall response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macnab, R. M. 1987. Motility and chemotaxis. In Rscherichia coli ant Salmonella, typhimurium: cellular and molecular biology, vol. 1 ( F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, editors). American Society for Microbiology, Washington, D.C. 732–759.

    Google Scholar 

  2. Armitage, J. P. 1988. Tactic responses in photosynthetic bacteria. Can.J.Microbiol 34: 475–481.

    Article  CAS  Google Scholar 

  3. Taylor, B. L. 1983. Role of proton motive force in sensory transduction in bacteria. Ann.Rey.Microbiol. 37: 551–573.

    Article  CAS  Google Scholar 

  4. Armitage, J. P., and R. M. Macnab. 1987. Unidirectional intermittent rotation of the flagellum of Rhodobacter sphaeroide, J.Bacterio1. 169: 514–51 8.

    Google Scholar 

  5. Poole, P. S., D. R. Sinclair, and J. P. Armitage. 1988. Real time computer tracking of free-swimming and tethered rotating cells. Apal.Biochern. 175: 52–58.

    Article  CAS  Google Scholar 

  6. Hader, D-P. 1987. Photosensory behaviour in prokaryotes. Microbiol.Rev. 51: 1–21

    PubMed  CAS  Google Scholar 

  7. Clayton, R. K. 1957. Patterns of accumulation resulting from taxes and changes in motility of microorganisms. Arch.Microhiol 27: 311–319

    CAS  Google Scholar 

  8. Clayton, R. K. 1958. On the interplay of environmental factors affecting taxis and mobility in Rhodospirillum rubrum. Arch Miorobiol. 29: 189–212

    Article  CAS  Google Scholar 

  9. Harayama, S. 1977. Phototaxis and membrane potential in the photosynthetic bacterium Rhodospiri1lum rubrum. J.Bacterio1. 131: 34–41.

    CAS  Google Scholar 

  10. Armitage, J. P., and M. C. W. Evans 1981. The reaction centre in the phototactic and chemotactic responses of Rhodopseudomonas sphaeroides. FMS Microhiol.Letts 11: 89–92.

    Article  Google Scholar 

  11. Armitage, J. P., C. Ingham, and M. C. W. Evans. 1985. Role of the proton motive force in phototactic and aerotactic responses of Rhodopseudomoas spheroides. J. Raoteriol. 163: 967–972

    Google Scholar 

  12. Ferguson, S. J., J. B. Jackson, and A. G. McEwan. 1987. Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS.Microhiol.Rev. 46: 117–143.

    Article  CAS  Google Scholar 

  13. Segall, J. E., A. Ishihara, and H. C.Berg 1985. Chemotactic signalling in filamentous cells of Rsrherinhia coli. J.Bacteriol 161: 51–59.

    CAS  Google Scholar 

  14. Hess, J. F., K. Oosawa, N. Kaplan, and M. I. Simon. 1988. Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53: 79–87

    Article  PubMed  CAS  Google Scholar 

  15. Parkinson, J. S. 1988. Protein phosphorylation in bacterial chemotaxis. Cell 53: 1–2.

    Article  PubMed  CAS  Google Scholar 

  16. Sockett, R. E., J. P. Armitage, and M. C. W. Evans. 1987. Methylation-independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum. J.Bacteriol. 169: 5808–5814.

    PubMed  CAS  Google Scholar 

  17. Shioi, J., C. V. Dang, and B. L. Taylor. 1987. Oxygen as attractant and repellent in bacterial chemotaxis. J.Bacteriol 169: 3118–3123.

    PubMed  CAS  Google Scholar 

  18. Taylor, B. L. 1983. How do bacteria find the optimum concentration of oxygen? Trends Biochem. Sci. 8: 438–441

    Article  CAS  Google Scholar 

  19. Postma, P. W., and J. W. Lengeler 1985. Phosphoenol- pyruvate: carbohydrate phosphotransferase system of bacteria. Minrohiol.Rev 49: 232–269

    CAS  Google Scholar 

  20. Ingham, C. J., and J. P. Armitage. 1987. Involvement of transport in Rhodohacter sphaeroides. J. Bacteriol. 169: 5801–5807.

    PubMed  CAS  Google Scholar 

  21. Poole, P. S., and J. P. Armitage. 1988. Motility response of Rhodnbacter sphaeroides chemntaxis to chemotactic stimulation. J. Bacteriol. 170: 5673–5679.

    PubMed  CAS  Google Scholar 

  22. Poole, P. S. and J. P. Armitage. 1989. Role of metabolism in the chemotactic response of Rhodnhacter sphaeroides to ammonia. J. Bacteriol. 171: 2900–2902.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armitage, J.P., Poole, P.S., Brown, S. (1990). Sensory Signalling in Rhodobacter Sphaeroides . In: Drews, G., Dawes, E.A. (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. FEMS Symposium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0893-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0893-6_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0895-0

  • Online ISBN: 978-1-4757-0893-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics