Sensory Signalling in Rhodobacter Sphaeroides

  • Judith P. Armitage
  • Philip S. Poole
  • Simon Brown
Part of the FEMS Symposium book series (FEMSS)


Motile bacteria actively swim about their environment, randomly changing direction every few seconds. When faced with a gradient of a chemical they alter the frequency of direction changing to bias their overall direction towards a favourable environment. Bacteria are too small to sense any change in concentration across their body length, and therefore environmental sampling must occur by temporal comparison. A bacterium such as Rhodobacter sphaeroides, living under conditions where any one of many different growth parameters could be limiting, must be able to sense and respond to changes in different metabolites, light intensity and wavelength, oxygen and other terminal electron acceptors and balance these different sensory signals to give an integrated overall response.


Swimming Behaviour Chemotactic Response Rhodobacter Sphaeroides Rhodospirillum Rubrum Bacterial Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macnab, R. M. 1987. Motility and chemotaxis. In Rscherichia coli ant Salmonella, typhimurium: cellular and molecular biology, vol. 1 ( F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, editors). American Society for Microbiology, Washington, D.C. 732–759.Google Scholar
  2. 2.
    Armitage, J. P. 1988. Tactic responses in photosynthetic bacteria. Can.J.Microbiol 34: 475–481.CrossRefGoogle Scholar
  3. 3.
    Taylor, B. L. 1983. Role of proton motive force in sensory transduction in bacteria. Ann.Rey.Microbiol. 37: 551–573.CrossRefGoogle Scholar
  4. 4.
    Armitage, J. P., and R. M. Macnab. 1987. Unidirectional intermittent rotation of the flagellum of Rhodobacter sphaeroide, J.Bacterio1. 169: 514–51 8.Google Scholar
  5. 5.
    Poole, P. S., D. R. Sinclair, and J. P. Armitage. 1988. Real time computer tracking of free-swimming and tethered rotating cells. Apal.Biochern. 175: 52–58.CrossRefGoogle Scholar
  6. 6.
    Hader, D-P. 1987. Photosensory behaviour in prokaryotes. Microbiol.Rev. 51: 1–21PubMedGoogle Scholar
  7. 7.
    Clayton, R. K. 1957. Patterns of accumulation resulting from taxes and changes in motility of microorganisms. Arch.Microhiol 27: 311–319Google Scholar
  8. 8.
    Clayton, R. K. 1958. On the interplay of environmental factors affecting taxis and mobility in Rhodospirillum rubrum. Arch Miorobiol. 29: 189–212CrossRefGoogle Scholar
  9. 9.
    Harayama, S. 1977. Phototaxis and membrane potential in the photosynthetic bacterium Rhodospiri1lum rubrum. J.Bacterio1. 131: 34–41.Google Scholar
  10. 10.
    Armitage, J. P., and M. C. W. Evans 1981. The reaction centre in the phototactic and chemotactic responses of Rhodopseudomonas sphaeroides. FMS Microhiol.Letts 11: 89–92.CrossRefGoogle Scholar
  11. 11.
    Armitage, J. P., C. Ingham, and M. C. W. Evans. 1985. Role of the proton motive force in phototactic and aerotactic responses of Rhodopseudomoas spheroides. J. Raoteriol. 163: 967–972Google Scholar
  12. 12.
    Ferguson, S. J., J. B. Jackson, and A. G. McEwan. 1987. Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS.Microhiol.Rev. 46: 117–143.CrossRefGoogle Scholar
  13. 13.
    Segall, J. E., A. Ishihara, and H. C.Berg 1985. Chemotactic signalling in filamentous cells of Rsrherinhia coli. J.Bacteriol 161: 51–59.Google Scholar
  14. 14.
    Hess, J. F., K. Oosawa, N. Kaplan, and M. I. Simon. 1988. Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53: 79–87PubMedCrossRefGoogle Scholar
  15. 15.
    Parkinson, J. S. 1988. Protein phosphorylation in bacterial chemotaxis. Cell 53: 1–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Sockett, R. E., J. P. Armitage, and M. C. W. Evans. 1987. Methylation-independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum. J.Bacteriol. 169: 5808–5814.PubMedGoogle Scholar
  17. 17.
    Shioi, J., C. V. Dang, and B. L. Taylor. 1987. Oxygen as attractant and repellent in bacterial chemotaxis. J.Bacteriol 169: 3118–3123.PubMedGoogle Scholar
  18. 18.
    Taylor, B. L. 1983. How do bacteria find the optimum concentration of oxygen? Trends Biochem. Sci. 8: 438–441CrossRefGoogle Scholar
  19. 19.
    Postma, P. W., and J. W. Lengeler 1985. Phosphoenol- pyruvate: carbohydrate phosphotransferase system of bacteria. Minrohiol.Rev 49: 232–269Google Scholar
  20. 20.
    Ingham, C. J., and J. P. Armitage. 1987. Involvement of transport in Rhodohacter sphaeroides. J. Bacteriol. 169: 5801–5807.PubMedGoogle Scholar
  21. 21.
    Poole, P. S., and J. P. Armitage. 1988. Motility response of Rhodnbacter sphaeroides chemntaxis to chemotactic stimulation. J. Bacteriol. 170: 5673–5679.PubMedGoogle Scholar
  22. 22.
    Poole, P. S. and J. P. Armitage. 1989. Role of metabolism in the chemotactic response of Rhodnhacter sphaeroides to ammonia. J. Bacteriol. 171: 2900–2902.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Judith P. Armitage
    • 1
  • Philip S. Poole
    • 1
  • Simon Brown
    • 1
  1. 1.Microbiology Unit Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations