Thermodynamic and Kinetic Features of the Redox Carriers Operating in the Photosynthetic Electron Transport of Chloroflexus Aurantiacus

  • Giovanni Venturoli
  • Reiner Feick
  • Massimo Trotta
  • Davide Zannoni
Part of the FEMS Symposium book series (FEMSS)


Chloroflexus aurantiacus is a thermophilic green photosynthetic bacterium containing a reaction center with a pigment composition different from that of purple bacteria; the reaction center is deficient in carotenoids and instead of four bacteriochlorophylls (BChls) and two bacteriopheophytins (BPhs) it contains 3 BChls and 3 BPhs (Blankenship et al., 1984). Similarly, the protein composition of Ch1.aurantiacus RC is quite peculiar: (a) it is composed of only two protein subunits (L, M); (b) peptide-mapping of these two polypeptides indicates a high degree of structural similarity; (c) it is the smallest functionally active RC thus far and (d) it shows thermal stability (Shiozawa et al. 1987; Schiozawa et al., 1989; Pierson et al., 1983). Conversely, the photochemical and early electron-transfer reactions, as determined by fast spectroscopy and circular dichroism in RCs preparations, suggest many similarities with the purple bacteria counterpart (Kirmaier and Holten, 1987). In addition, several aspects of secondary electron transport (Zannoni and Ingledew, 1985) and the light-dependent energy trasducing machinery of Chloroflexus (Venturoli and Zannoni, 1987) can be brought back to previous observations in purple non-sulphur bacteria.


Purple Bacterium Primary Photochemistry Blue Copper Protein Green Bacterium Rieske Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amesz, J., and Knaff, D., 1988, Molecular mechanism of bacterial photosynthesis, in: “Biology of Anaerobic Microrganisms”, A. J. B. Zehnder, ed., John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  2. Bartsch, R. G., 1978, Cytochromes, in: “The Photosynthetic Bacteria”, R. K. Clayton and W. R. Sistrom, eds., Plenum Press, New York.Google Scholar
  3. Blankenship, R. R., Bruce, D. C., Freeman, J. H., King, G. H., McManus, J. D., Nozawa, T. Trost, T., and Wittmershaus, B. P., 1988, Energy trapping and electron transfer in Chloroflexus aurantiacus, in: “Green Photosynthetic Bacteria”, J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Truper, eds., Plenum Press, New York and London.Google Scholar
  4. Blankenship, R. E., Huynh, P., Gabrielson, H., and Mancino, L. J., 1986, Purification, physical properties and kinetic behaviour of cytochrome c554 from Chloroflexus aurantiacus, Biophys. J. 47: 2a.Google Scholar
  5. Blankenship, R. E., Mancino, L. J., Feick, R., Fuller, R. C., Machniki, J., Frank, H. A. Kirkmaier, C., and Holten, D., 1984, Primary photochemistry and pigment composition of reaction centers isolated from the green photosynthetic bacterium Chloroflexus aurantiacus, in: “Advances in Photosynthesis Research”, C. Sybesma, ed., vol. I, p. 203, M. Nijhoff-Dr. W. Junk, The Hague.Google Scholar
  6. Blankenship, R. E., Trost, J. T., and Mancino, L. J., 1988, Properties of reaction centers from the green bacterium Chloroflexus aurantiacus, in: “The Photosynthetic Bacterial Reaction Center. Structure and Dynamics”, J. Breton and A. Vermeglio, eds., vol. 149, p. 119, Plenum Press New York and London.Google Scholar
  7. Bruce, B. D., Fuller, R. C., and Blankenship, R. E., 1982, Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus, Proc. Natl. Acad. Sci. USA 79: 6532.Google Scholar
  8. Dutton, P. L., 1971, Oxidation-reduction potential dependence of the interactions of cytochromes, bacteriochlorophyll and carotenoids at 77K in chromatophores of Chromatium vinosum and Rhodopseudomonas gelatinosa, Biochim. Biophys. Acta 226: 63.PubMedCrossRefGoogle Scholar
  9. Dutton, P. L., and Leigh, J. S., 1973, Electron spin resonance characterization of Chromatium D hemes. Non-heme irons and the components involved in primary photochemistry, Biochim. Biophys. Acta, 193: 93.Google Scholar
  10. Dutton, P. L., and Prince, R. C., 1978, Reaction center driven cytochrome interactions in electron and proton translocation and energy coupling, in: “The Photosynthetic Bacteria”, R. K. Clayton and W. R. Sistron, eds., Plenum Press, New York.Google Scholar
  11. Hale, M. B., Blankenship, R. E., and Fuller, R. C., 1983, Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus, Biochim. Biophys. Acta 723: 376.CrossRefGoogle Scholar
  12. Kirmaier, C., and Holten, D., 1987, Photochemistry of reaction centers from photosynthetic purp]e bacteria, Photosynt. Res. 13: 225.CrossRefGoogle Scholar
  13. McManus, J. D., Trost, J. T., and Blankenship, R. E., 1988, Kinetic bahaviour and N-terminal amino acid sequence of auracyanin, Biophys. J. 53: 268aGoogle Scholar
  14. Parson, W. W., 1968, The role of P870 in bacterial photosynthesis, Biochim. Biophys. Acta 153: 248.PubMedCrossRefGoogle Scholar
  15. Pierson, B. K., and Castenholz, R. W., 1974, A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, Arch. Microbiol 100: 5.CrossRefGoogle Scholar
  16. Pierson, B., Thornber, J. P., and Seftor, R. E., 1983, Partial purification, subunit structure and thermal stability of the photochemical reaction center of the thermophilic green bacterium Chloroflexus aurantiacus, Biochim. Biophys. Acta 723: 322.CrossRefGoogle Scholar
  17. Prince, R. C., Lindsay, J. G., and Dutton, P. L., 1975, The Rieske iron sulphur center in mitochondrial and photosynthetic systems. Em/pH relationship, FEBS Lett. 51: 117CrossRefGoogle Scholar
  18. Trost, J. T., McManus, J. D., Freeman, J. C., Ramarkrishna, B. L., and Blankenship, R. E., 1988, Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus, Biochemistry 27: 7858CrossRefGoogle Scholar
  19. Schiozawa, J. A., Lottspeich, F., and Feick, R., 1987, The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides, Eur. J. Biochem. 167: 595.CrossRefGoogle Scholar
  20. Schiozawa, J. A., Lottspeich, F., Oesterhelt, D., and Feick, R., 1989, The prima ry structure of the Chloroflexus aurantiacus reaction center polypeptides, Eur. J. Biochem. 180: 75.CrossRefGoogle Scholar
  21. Venturoli, G., Trotta, M., and Zannoni, D., 1989, Comparative aspects of quinones in bacterial electron transport chains, in: ”Highlights in Ubiquinone Research”, G. Lenaz and M. Battino, eds., Taylor and Francis Ltd., in the press Google Scholar
  22. Venturoli, G., and Zannoni, D., 1988, Oxidation reduction thermodynamics of the acceptor quinone complex in whole-membrane fragments from Chloroflexus aurantiacus, Eur. J. Biochem. 178: 503.CrossRefGoogle Scholar
  23. Zannoni, D., and Ingledew, J. W., 1985, A thermodynamic analysis of the plasma membrane electron transport components in photoheterotrophically grown cells of Chloroflexus aurantiacus, FEBS Lett. 193: 93.CrossRefGoogle Scholar
  24. Zannoni, D., and Melandri, B. A., 1985, Function of Ubiquinone in Bacteria, in: “Coenzyme Q. Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone”, G. Lenaz, ed., John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore.Google Scholar
  25. Zannoni, D., and Venturoli, G., 1988, The mechanism of photosynthetic electron transport and energy transduction by membrane fragments from Chloroflexus aurantiacus, in: “The Green Photosynthetic Bacteria”, J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and G. Truper, eds., Plenum Press, New York and London.Google Scholar
  26. Zannoni, D., 1986, The branched respiratory chain of heterotrophically dark-grown Chloroflexus aurantiacus, FEBS Lett. 198: 119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Giovanni Venturoli
    • 1
  • Reiner Feick
    • 3
  • Massimo Trotta
    • 2
  • Davide Zannoni
    • 1
  1. 1.Department of Biology, Institute of BotanyUniversity of Bologna Bo (I)Italy
  2. 2.Centro C. N. R.Interazione Luce Materia Bari(I)Italy
  3. 3.Max-Plank Institut fur BiochemieMartinsried (W. G.)Germany

Personalised recommendations