Nicotinamide Nucleotide Transhydrogenase in Photosynthetic Bacteria

  • J. B. Jackson
  • N. P. J. Cotton
  • T. M. Lever
  • I. J. Cunningham
  • T. Palmer
  • M. R. Jones
Part of the FEMS Symposium book series (FEMSS)

Abstract

Nicotinamide nucleotide transhydrogenase, found in animal and plant mitochondria and many bacteria, is a membrane protein which catalyses the reversible transfer of hydride equivalents from NADH to NADP+.

Keywords

Photosynthetic Bacterium Rhodospirillum Rubrum Nucleotide Concentration NADH Oxidase Activity Local Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, D.M., Loo, T.P., Gillam, S. and Bragg, P.D. Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 158: 647–653 (1986)PubMedCrossRefGoogle Scholar
  2. 2.
    Yamaguchi, M., Hatefi, Y., Trach, K. and Hock, J.A. The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones. J. Biol. Chem. 263: 2761–2767 (1988)PubMedGoogle Scholar
  3. 3.
    Cotton, N.P.J., Myatt, J.F. and Jackson, J.B. The dependence of the rate of transhydrogenase on the value of the protonmotive force in chromatophores from photosynthetic bacteria. FEBS Lett. 219: 88–92 (1987)CrossRefGoogle Scholar
  4. 4.
    Fisher, R.R. and Guillory, R.J. Partial resolution of energy-linked reactions in Rhodospirillum rubrum chromatophores. FEBS Lett. 3: 27–30 (1969)PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher, R.R. and Earle, S.R. in “Pyridine nucleotide coenzymes” Everse et al. eds. Chapter 9. pp.279–324, Academic Press, New York, (1982)Google Scholar
  6. 6.
    Fisher, R.R. and Guillory, R.J. Resolution of enzymes catalysing energy-linked transhydrogenation: Interaction of transhydrogenase factor with the Rhodospirillum rubrum chromatophore membrane. J. Biol. Chem. 246: 4679–4686 (1971)PubMedGoogle Scholar
  7. 7.
    Konings, A.W.T. and Guillory, R.J. Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim. Biophys. Acta. 283: 334–338 (1972)Google Scholar
  8. Cotton, N.P.J., Lever, T.M., Nore, B.F., Jones, M.R. and Jackso, J.B. The coupling between the proton motive force and the NAD(P) transhydrogenase in chromatophores from photosynthetic bacteria. Eur. J. Biochem. 182:593–603 (1989)Google Scholar
  9. 9.
    Lee, C.-P. and Ernster, L. Equilibrium studies of the energy-dependent and non-energy-dependent pyridine nucleotide transhydrogenase reactions. Biochim. Biophys. Acta. 81: 187–190 (1964).Google Scholar
  10. 10.
    Clarke, D.M. and Bragg, P.D. Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 149: 517–523 (1985)PubMedCrossRefGoogle Scholar
  11. 11.
    Earle, S.R. and Fisher, R.R. A direct demonstration of proton translocation coupled to transhydrogenation in reconstituted vesicles. J. Biol. Chem. 255: 827–830 (1980)Google Scholar
  12. 12.
    Jackson, J.B. and Clark, A.J. Carotenoid absorption band shifts and distribution of butyltriphenylphosphonium ions as membrane potential indicators in intact cells of photosynthetic bacteria, in “Vectorial reactions in electron and ion transport”, F. Palmieri et al. eds. pp. 371–379 Elsevier/North Holland Biomedical Press, (1981)Google Scholar
  13. 13.
    Mitchell, P. Chemiosmotic coupling and energy transduction. Theoret. Exp. Biophys. 2: 159–215 (1969)Google Scholar
  14. 14.
    Junge, W. The critical electric potential difference for photophosphorylation. Eur. J. Biochem. 14: 582–592 (1970)Google Scholar
  15. 15.
    Lager, P. and Stark, G. Kinetics of carrier mediated ion transport across lipid bilayer membranes. Biochim. Biophys.Acta 211:458–466 (1970)Google Scholar
  16. 16.
    Apell, H.J., Borlinghaus, R. and Laüger, P. Fast charge trans-locations associated with partial reactions of the Na +, K pump. J. Membr. Biol. 97: 179–191 (1987)PubMedCrossRefGoogle Scholar
  17. 17.
    Laüger, P. Thermodynamic and kinetic properties of electrogenic ion pumps. Biochim. Biophys. Acta. 779: 307–341 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. B. Jackson
    • 1
  • N. P. J. Cotton
    • 1
  • T. M. Lever
    • 1
  • I. J. Cunningham
    • 1
  • T. Palmer
    • 1
  • M. R. Jones
    • 1
  1. 1.School of BiochemistryUniversity of BirminghamBirminghamUK

Personalised recommendations