The Rhodospirillum Rubrum Cytochrome bc1, Complex

  • David B. Knaff
Part of the FEMS Symposium book series (FEMSS)


The cytochrome bc 1 complex was first characterized as one of the membrane-bound, multipeptide complexes of the mitochondrial electron transport chain. Subsequently, functionally equivalent cytochrome bc 1 complexes were discovered in the photosynthetic and respiratory chains of bacteria. These complexes, and the related cytochrome b 6f complexes of oxygenic photosynthetic organisms, play a central role in energy transduction associated with photosynthetic and respiratory electron transfer, as the electron flow from quinol to cytochrome c catalyzed by the complexes is coupled to the formation of a proton gradient and an electrical potential across the membrane(1-3). The cytochrome bc 1 complexes of photosynthetic purple non-sulfur bacteria have proven particularly useful for studying the pathway of electron movement for the following reasons:1. The ability to perform kinetic measurements after electron flow is initiated by a short, single-turnover light flash has provided a detailed sequence of electron transfer steps in Rhodobacter sphaeroides and Rhodobacter capsulatus(4,5) and, to a lesser extent, in Rhodospirillum rubrum (6); 2. While the electron-carrying chromophore content of the complexes isolated from photosynthetic bacteria and mitochondria are identical, the peptide compositions of the former are much simpler than those of mitochondria(i.e., three or four vs. ten subunits-Ref. 1,3,7); 3. The amino acid sequences, deduced from the nucleotide sequences of the corresponding genes, are known for all three chromophorecontaining subunits of the Rb. capsulatus complex(8,9). Sequences should be available soon for the Rb. sphaeroides and Rhodopseudomonas viridis complexes (A.R. Crofts and D. Oesterhelt, peronal communications) and sequence work is beginning on the R. rubrum complex(See below). The R. rubrum cytochrome bc 1 complex(10,11) has several additional advantages, including its unambiguous three peptide subunit composition, its stability and the fact that it contains a high affinity binding site for its electron acceptor, cytochrome c 2(12).


Photosynthetic Bacterium Electron Spin Echo Envelope Modulation Resonance Raman Spectrum Rieske Protein Electron Spin Echo Envelope Modulation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hauska, G., Hurt, E., Gabellini, N. and Lockau, W., Biochim. Biophys. Acta 726:97(1983).PubMedCrossRefGoogle Scholar
  2. 2.
    Rich, P. R., Biochim Biophys. Acta 768:53(1984).PubMedCrossRefGoogle Scholar
  3. 3.
    Gabellini, N., J. Bioenerg. Biomembr. 20:58(1988).CrossRefGoogle Scholar
  4. 4.
    Crofts, A. R., Meinhardt, S. W., Jones, K. and Snozzi, M., Biochim. Biophys. Acta 723:202(1983).Google Scholar
  5. 5.
    Dutton, P. L., in: “Encyclopedia of Plant Physiology,” Vol. 19, Staehlin, A. and Arntzen, C. J., eds., pp. 197–237, Springer-Verlag, W. Berlin (1986).Google Scholar
  6. 6.
    van der Wal, H. N. and van Grondelle, R., Biochim. Biophys. Acta 735:94(1983).Google Scholar
  7. 7.
    Ljungdahl, P. 0., Pennoyer, J. B., Roberstson, D. E. and Trumpower, B. L., Biochim. Biophys. Acta 891:227(1987).PubMedCrossRefGoogle Scholar
  8. 8.
    Gabellini, N. and Sebald, W., Eur. J. Biochem. 154: 569 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson, E. and Daldal, F., J. Mol. Biology 195: 13 (1987).CrossRefGoogle Scholar
  10. 10.
    Wynn, R. M., Gaul, D. F., Choi, W.-K., Shaw, R. W. and Knaff, D. B., Photosyn. Res. 9:181(1986).Google Scholar
  11. 11.
    Kriauciunas, A., Yu, L., Yu, C.-A., Wynn, R. M. and Knaff, D. B., Biochim. Biophys. Acta, in press.Google Scholar
  12. 12.
    Bosshard, H. R., Wynn, R. M. and Knaff, D. B., Biochem. 6: 7688 (1987).Google Scholar
  13. 13.
    Hobbs, D., Kriauciunas, A., Güner, S., Knaff, D. B. and Ondrias, M. O., in preparation for submission to Biochim. Biophys. Acta.Google Scholar
  14. 14.
    Britt, D., Sauer, K., Klein, M. P., Knaff, D. B., Kriauciunas, A., Yu, C.-A., Yu, L. and Malkin, R., in preparation for submission to Biochemistry.Google Scholar
  15. 15.
    Hall, J., Kriauciunas, A., Knaff, D. and Millett, F., J. Biol. Chem. 262:14005(1987).PubMedGoogle Scholar
  16. 16.
    Yu, L., Yang, F. and Yu, C.-A., J. Biol. Chem. 260:963(1985).PubMedGoogle Scholar
  17. 17.
    Yu, C.-A. and Yu,L., Biochem. 21: 4096 (1982).Google Scholar
  18. 18.
    Clayton, R. K., in: “Bacterial Photosynthesis,” Gest, H., San Pietro, A. and Vernon, L. P., eds., pp. 495–500, Antioch Press, Yellow Springs Ohio(1963).Google Scholar
  19. 19.
    Haley, P. E., Yu, L., Dong, J. H., Keyser, G. C., Sanborn, M.R. and Yu, C.-A., J. Biol. Chem. 261:14593(1986).Google Scholar
  20. 20.
    Venturoli, G., Fenoll, C. and Zannoni, D., Biochim. Biophys. Acta 892:172(1987).CrossRefGoogle Scholar
  21. 21.
    Cramer, W. A., Widger, W. R., Black, M. T. and Girven, M. E., in: “Topics in Photosynthesis,” Barber, J., ed., Vol. 8, The Light Reactions, pp. 447–493, Elsevier Medical Press, New York(1987).Google Scholar
  22. 22.
    Fee, J. A., Findling, K.C., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A. and Münck, E., J. Biol. Chem. 259: 124 (1984).Google Scholar
  23. 23.
    Cline, J. F., Hoffman, B. M., Mims, W. B., LaHaie, E., Ballou, D. P. and Fee, J. A., J. Biol. Chem. 260: 3251 (1985).Google Scholar
  24. 24.
    Gubriel, R. J., Batie, C. J., Sivaraja, M., True, A.E., Fee, J. A., Hoffman, B. M. and Ballou, D. P., Biochem. 28: 4861 (1989).Google Scholar
  25. 25.
    Telser, J., Hoffman, B. M., Lo Brutto, R., Ohnishi, T., Tsai, A.-L., Simpkin, D. and Palmer, G., FEBS Lett. 214: 117 (1987).Google Scholar
  26. 26.
    Mims, W. B. and Peisach, J., in: “Biological Magnetic Resonance,” Berliner, C. J. and Reuben, J., eds., Vol. 3, pp. 213–263, Plenum Press, New York(1981).Google Scholar
  27. 27.
    Hall, J., Ayres, M., Zha, X., O’Brien, P., Durham, B., Knaff, D. and Millett, F., J. Biol. Chem. 262: 11046 (1987).Google Scholar
  28. 28.
    Salemme, F. R., Ann. Rev. Biochem. 46:299(1987).Google Scholar
  29. 29.
    Stonehuerner, J., Williams, J. B. and Millett, F., Biochem. 18: 5422 (1979).Google Scholar
  30. 30.
    Smith, H. T., Ahmed, A. J. and Millett, F., J. Biol. Chem. 256:4984(1981).Google Scholar
  31. 31.
    Yu, L., Mei, Q.-C. and Yu, C.-A., J. Biol. Chem. 259:5752(1984).PubMedGoogle Scholar
  32. 32.
    Wilson, E., Farley, T. M. and Takemoto, J. Y., J. Biol. Chem. 260:10288(1985).Google Scholar
  33. 33.
    Yu, L. and Yu, C.-A., Biochem. 26: 3658 (1987).Google Scholar
  34. 34.
    Andrews, K., Ph.D. Thesis, University of Illinois(1988).Google Scholar
  35. 35.
    Stoneheurner, J., O’Brien, P., Geren, L., Millett, F., Steidl, J., Yu, L. and Yu, C.-A., J. Biol. Chem. 260:5392(1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • David B. Knaff
    • 1
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations