Examination of the Rhodobacter Capsulatus Special Pair in Wild-Type and Heterodimer-Containing Reaction Centers by Time-Resolved Optically Detected Magnetic Resonance

  • Stephen V. Kolaczkowski
  • Edward J. Bylina
  • Douglas C. Youvan
  • James R. Norris
Part of the FEMS Symposium book series (FEMSS)


One of the exciting new techniques available to photosynthetic researchers is the ability to perform site-directed mutagenesis on the photosynthetic apparatus. The X-ray crystal structures of reaction centers (RCs) can be used to identify important amino acid residues (Michel et al., 1986; Chang et al., 1986; Yeates et al., 1988). Genetic manipulations that alter such residues allow for unprecedented experimental possibilities. Rb. capsulatus possesses the best-developed genetic system for the study of the photosynthetic apparatus (Scolnick and Marrs, 1987). A system of deletion strains (Youvan et al., 1985) and complementing plasmids (Bylina et al., 1986, 1989) has been used to generate a diverse collection of reaction center mutations. When the histidine at M200 was replaced with either leucine or phenylalanine, the (Bch1)2 primary donor is replaced with a Bchl-Bphe heterodimer (Bylina and Youvan, 1988). The isolation of heterodimer-containing RCs is one of the first true tests of the importance of a special pair type structure for efficient photosynthetic charge separation.


Reaction Center Radical Pair Deletion Strain Magnetic Field Effect Photosynthetic Reaction Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowman, M.K., Budil, D.E., Closs, G.L., Kostka, A.G., Wraight, C.A. & Norris, J.R. (1981) Magnetic resonance spectroscopy of the primary state Pf, of bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 78, 3305–3307.Google Scholar
  2. Boxer, S.G., Chidsey, C.E.D. & Roelots, M.G. (1983) Magnetic field effects in the solid state: An example from photosynthetic reaction centers, Ann. Rev. Phys. Chem. 34, 389–398.Google Scholar
  3. Breton, J., Bylina, E.J. & Youvan, D.C. (1989) Pigment organization in genetically modified reaction centers of Rhodobacter capsulatus, Biochemistry 28, 6423–6430CrossRefGoogle Scholar
  4. Brettel, K. & Setif, P. (1987) Magnetic effects on Primary reactions of Photosystem I, Biochim. Biophys. Acta 893, 109–114.Google Scholar
  5. Budil, D.E. (1986) Magnetic characterization of the primary radical pair state of bacterial photosynthesis, Thesis Dissertation, University of Chicago, Chicago, Illinois.Google Scholar
  6. Budil, D.E., Kolaczkowski, S.V., & Norris, J.R. (1987) Temperature dependence of electron in Progress in Photosynthesis Research (Biggins, J., Ed.) Vol 1, pp 125–128, Martinus Nijhoff, Dordrect, The Netherlands.Google Scholar
  7. Bylina, E.J., Ismail, I. & Youvan, D.C. (1986) Plasmid pÚ29, a vehicle for mutagenesis of the photosynthetic pufoperon in Rhodopseudomonas capsulata, Plasmid 16, 175–181.PubMedCrossRefGoogle Scholar
  8. Bylina, E.J., Kirmaier, C., Mc Dowell, L., Holten, D. & Youvan, D.C. (1988) Influence of an amino acid residue on the optical properties of a photosynthetic reaction center complex, Nature 336, 182–184.CrossRefGoogle Scholar
  9. Bylina, E.J. & Youvan, D.C. (1987) Genetic engineering of herbicide resistance: saturation mutagenesis isoleucine 229 of the reaction center L subunit., Z. Naturforsch. 42c: 769–774.Google Scholar
  10. Bylina, E.J. & Youvan, D.C. (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center, Proc. Natl. Acad. Sci. USA 85, 7226–7230.Google Scholar
  11. Bylina, E.J., Jovine, R.V.M. & Youvan, D.C. (1989) A genetic system for rapidly assessing herbicides that compete for the quinone binding site of photosynthetic reaction centers, Bio/Technology 7, 69–74.CrossRefGoogle Scholar
  12. Bylina, E.J., Kolaczkowski, S.V., Norris, J.R., & Youvan, D.C. EPR characterization of genetically modified reaction centers of Rhodobacter capsulatus,submitted.Google Scholar
  13. Chang, C.-H., Tiede, D., Tang, J., Smith, U., Norris, J.R., & Schiffer, M. (1986) Structure of the Rhodopseudomonas sphaeroides R-26 reaction center, FEBS Lett. 205, 82–86.PubMedCrossRefGoogle Scholar
  14. Cogdell, R.J., Monger, T.J. & Parson, W.W. (1975) Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillium rubrum, Biochim. Biophys. Acta 408, 198–199.Google Scholar
  15. Hoff, A.J. (1981) Magnetic field effects on photosynthetic reaction centers, Quart. Rev. Biophys. 14, 599–665.Google Scholar
  16. Kirmaier, C., Holten, D., Bylina, E.J. & Youvan, D.C. (1988) Electron transfer in a genetically modified bacterial reaction center containing a heterodimer, Proc. Natl. Acad. Sci. USA 85, 7562–7566.Google Scholar
  17. Klug, G. & Cohen, S.N. (1988) Pleiotropic effects of localized Rhodobacter capsulatus pufoperon deletions on production of light-absorbing pigment-protein complexes, J.Bacteriol. 170, 5814–5821.PubMedGoogle Scholar
  18. Kolaczkowski, S.V., Budil, D.E. & Norris, J.R. (1987) 3(P+I-) lifetime as measured by B1 field dependent RYDMR triplet yield, in Progress in Photosynthesis Research (Biggins, J., Ed.) Vol 1, pp 1213–1216, Martinus Nijhoff, Dordrect, The Netherlands.Google Scholar
  19. Kolaczkowski, S.V. (1989) On the mechanism of triplet energy transfer from the triplet primary donor to spheroidene in photosynthetic reaction centers from Rhodobacter sphaeroides 2.4. 1, Thesis Dissertation, Brown University, Providence, Rhode Island.Google Scholar
  20. Michel, H., Epp, O. & Deisenhofer, J. (1986) Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis, EMBO J. 5, 2445–2451.PubMedGoogle Scholar
  21. Norris, J.R., Bowman, M.K., Budil, D.E., Tang, J., Wraight, C.A. & Closs, G.L. (1982) Magnetic characterization of the primary state of bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 79, 5532–5536.Google Scholar
  22. Norris, J. R., Budil, D.E., Kolaczkowski, S.V., Tang, J.H. & Bowman, M.K. (1985) Photoinduced charge separation in bacterial reaction centers investigated by triplets and radical pairs, in: Antennas and Reaction Centers of Photosynthetic Bacteria ( Michel-Beyerle, M.E., Ed.) pp 190–197, Springer-Verlag, New York.CrossRefGoogle Scholar
  23. Prince, R.C. & Youvan, D.C. (1987) Isolation and spectroscopic properties of photochemical reaction centers from Rhodobacter capsulatus, Biochim. Biophys. Acta 890, 286–291.Google Scholar
  24. Schenck, C.C., Blankenship, R.E. & Parson, W.W. (1982) Radical pair decay kinetics, triplet yields and delayed fluorescence from bacterial reaction centers, Biochim. Biophys. Acta 680, 44–59.Google Scholar
  25. Scolnick, P.A. & Marrs, B.L. (1987) Genetic research with photosynthetic bacteria, Ann. Rev. Microbiol. 41, 703–726.Google Scholar
  26. Thurnauer, M.C., Katz, J.J. & Norris, J.R. (1977) The triplet state in bacterial photosynthesis: possible mechanisms of the primary photoact, Proc. Natl. Acad. Sci. USA 75, 3270–3274.Google Scholar
  27. Wasielewski, M.R. (1988) Synthetic models for photosynthesis, Photochem. Photobiol., 47, 923–929.Google Scholar
  28. Wasielewski, M.R., Norris, J.R. & Bowman, M.K. (1984) Magnetic resonance studies of short-lived radical pairs in solution, Faraday Disc. Chem. Soc. 78, 279–288.Google Scholar
  29. Yang, M.M. & Youvan, D.C. (1988) Applications of imaging spectroscopy in molecular biology: I. screening photosynthetic bacteria, Bio/Technology 6, 939–942.Google Scholar
  30. Yeates, T.O., Komiya, H., Chirino, A., Rees, D.C., Allen, J.P., & Feher, G. (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofacter (bacteriochlorophyll, bacteriopheophytin and carotenoid) interactions, Proc. Natl. Acad. Sci. USA 85, 7993–7997.Google Scholar
  31. Youvan, D.C., Hearst, J.E. & Marrs, B.L. (1983) Isolation and characterization of enhanced fluorescence mutants of Rhodopseudomonas capsulata, J. Bacteriol. 154, 748–755.PubMedGoogle Scholar
  32. Youvan, D.C., Ismail, S. & Bylina, E.J. (1985) Chromosomal deletion and plasmid complementation of the photosynthetic reaction center and light harvesting genes from Rhodopseudomonas capsulata, Gene 38, 19 - 30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Stephen V. Kolaczkowski
    • 1
  • Edward J. Bylina
    • 2
  • Douglas C. Youvan
    • 2
  • James R. Norris
    • 1
  1. 1.Chemistry DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations