Phosphorylation of Membrane Proteins in Control of Excitation Energy Transfer

  • John F. Allen
  • Michael A. Harrison
Part of the FEMS Symposium book series (FEMSS)


In chloroplasts of green plants a broad function for phosphorylation of light-harvesting polypeptides is relatively well characterised while the mechanism by which phosphorylation exerts its effect is mostly a matter for speculation. The state of knowledge for the photosynthetic purple bacteria and cyanobacteria is much less satisfactory, and for the green photosynthetic bacteria it is non-existent.


Glutamine Synthetase Excitation Energy Transfer Cascade Control Photosynthetic Purple Bacterium Green Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Allen, M. A. Harrison and N. G. Holmes, Protein phosphorylation and control of excitation energy transfer in photosynthetic purple bacteria and cyanobacteria, Biochimie in press.Google Scholar
  2. 2.
    A. N. Glazer, Light harvesting by phycobilisomes, Annu. Rev. Biophvs. Biophys. Chem., 14: 47 (1985).CrossRefGoogle Scholar
  3. 3.
    C. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta, 189: 366 (1969).Google Scholar
  4. 4.
    N. Murata, Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta, 172: 242 (1969).Google Scholar
  5. 5.
    J. Myers, Enhancement studies in photosynthesis, Annu. Rev. Plant Physiol., 22: 289 (1971).CrossRefGoogle Scholar
  6. 6.
    W. P. Williams and J. F. Allen, State 1/state 2 changes in higher plants and algae, Photosvnth. Res., 13: 19 (1987).Google Scholar
  7. 7.
    J. F. Allen, J. Bennett, K. E. Steinback and C. J. Arntzen, Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems, Nature, 291: 25 (1981).CrossRefGoogle Scholar
  8. 8.
    P. Horton, J. F. Allen, M. T. Black and J. Bennett, Regulation of phosphorylation of chloroplast membrane polypeptides by the redox state of plastoquinone, FEBS Lett., 125: 193 (1981).Google Scholar
  9. 9.
    G. Schuster, G. C. Owens, Y. Cohen and I. Ohad, Light-independent phosphorylation of the chlorophyll a/b protein complex in thylakoids of the prokaryote Prochloron, Biochim. Biophys. Acta, 767: 596 (1984).CrossRefGoogle Scholar
  10. 10.
    J. Biggins, C. L. Campbell and D. Bruce, Mechanism of the light state transition in photosynthesis: II. Analysis of phosphorylated polypeptides in the red alga Porphyridium cruentum, Biochim. Biophys. Acta, 806: 230 (1984).Google Scholar
  11. 11.
    J. F. Allen, C. E. Sanders and N. G. Holmes, Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301, FEBS Lett., 193: 271 (1985).Google Scholar
  12. 12.
    C. E. Sanders and J. F. Allen, The 18.5 kDa phosphoprotein of the cyanobacterium Synechococcus 6301: a component of the phycobilisome, in: Progress in Photosynthesis Research. Vol. II, J. Biggins, ed., Martinus Nijhoff, Dordrecht (1987).Google Scholar
  13. 13.
    C. E. Sanders and J. F. Allen, Effects of divalent cations on 77K fluorescence emission and on membrane protein phosphorylation in isolated thylakoids of the cyanobacterium Synechococcus 6301, Biochim. Biophys. Acta, 934: 87 (1988).Google Scholar
  14. 14.
    J. F. Allen and N. G. Holmes, A general model for regulation of photosynthetic unit function by protein phosphorylation, FEBS Lett., 202: 175 (1986).Google Scholar
  15. 15.
    D. Akrigg, A. J. Bleasby, N. I. M. Dix, J. B. C. Findlay, D. Parry-Smith, J. C. Wootton, T. L. Blundell, S. P. Gardner, F. Hayes, S. Islam, M. J. E. Sternberg, J. M. Thornton and I. J. Tickle, A protein sequence/structure database, Nature 335: 745 (1988).CrossRefGoogle Scholar
  16. 16.
    H. S. Son and S. G. Rhee, Cascade control of Escherichia coli glutamine synthetase. Purification and properties of P11 protein and nucleotide sequence of its structural gene, J. Biol. Chem. 262: 8690 (1987).Google Scholar
  17. 17.
    B. Magasanik, Reversible phosphorylation of an enhancer binding protein regulates transcription of bacterial nitrogen utilization genes, Trends Biochem. Sci. 13: 475 (1988).Google Scholar
  18. 18.
    M. Kawamura, M. Mimuro and Y. Fujita, Quantitative relationship between two reaction centres in the photosynthetic system of blue green algae, Plant Cell Physiol. 20: 697 (1979).Google Scholar
  19. A. Melis and J. S. Brown, Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes, Proc. Natl. Acad. Sci. USA 77:4712 (1980).Google Scholar
  20. 20.
    Y. Fujita, A. Murakami and K. Ohki, Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems, Plant Cell Physiol. 28: 283 (1987).Google Scholar
  21. 21.
    A. Melis, C. W. Mullineaux and J. F. Allen, Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light: evidence from quantum yield measurements and fluorescence spectroscopy of cyanobacterial cells, Z. Naturforsch. 44c: 109 (1989).Google Scholar
  22. 22.
    N. Tandeau de Marsac, Phycobilisomes and complementary chromatic adaptation in cyanobacteria, Bulletin Institut Pasteur, 81: 201 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John F. Allen
    • 1
  • Michael A. Harrison
    • 1
  1. 1.Department of Pure and Applied BiologyUniversity of LeedsLeedsEngland

Personalised recommendations