Carotenoid Absorbance Changes in Liposomes Reconstituted with Pigment-Protein Complexes from Rhodobacter Sphaeroides

  • Wim Crielaard
  • Klaas J. Hellingwerf
  • Wil N. Konings
Part of the FEMS Symposium book series (FEMSS)


The electrochromic behaviour of carotenoids has been widely used to determine the electrical potential difference (∆ψ) across photosynthetic membranes, like chromatophores [1] and bacterial cells [2,3]. The carotenoid absorbance change has several advantages over other methods for recording the ∆ψ: (i) the method is non-invasive, (ii) the relationship between the ∆ψ and the absorbance change is linear and (iii) the method shows a rapid response time. The major disadvantage of the carotenoid band shift as a ∆ψ indicator is that a calibration of the ∆ψ dependent bandshifts is not (always) possible in every experimental system [3].


Difference Spectrum Absorbance Change Photosynthetic Membrane Electrical Potential Difference Rhodopseudomonas Palustris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1]
    Jackson, J.B. and Crofts, A.R. (1969) FEBS Lett. 4, 185–189.PubMedCrossRefGoogle Scholar
  2. 2]
    Clark, A.J. and Jackson, J.B. (1981) Biochem. J. 200, 389–397.PubMedGoogle Scholar
  3. 3]
    Crielaard, W., Cotton, N.P.J., Jackson, J.B., Hellingwerf, KJ. and Konings, W.N. (1988) Biochim. Biophys. Acta 932, 17–25.CrossRefGoogle Scholar
  4. 4]
    Holmes, N.G., Hunter, C.N., Niederman, RA. and Crofts, A.R. (1980) FEBS Lett. 115, 43–48.CrossRefGoogle Scholar
  5. 5]
    Webster, G.D., Cogdell, RJ. and Lindsay, J.G. (1980) Biochim. Biophys. Acta 591, 321–330.CrossRefGoogle Scholar
  6. 6]
    Molenaar, D., Crielaard, W. and Hellingwerf, KJ. (1988) Biochemistry 27, 2014–2023.CrossRefGoogle Scholar
  7. 7]
    De Grooth, B.G. and Amesz, J. (1977) Biochim. Biophys. Acta 462, 237–246.Google Scholar
  8. 8]
    De Grooth, B.G. and Amesz, J. (1977) Biochim. Biophys. Acta 462, 247–258.CrossRefGoogle Scholar
  9. 9]
    Robert, B. and Frank, H.A. (1988) Biochim. Biophys. Acta 934, 401–405.CrossRefGoogle Scholar
  10. 10]
    Wraight, C.A., Cogdell, RJ. and Chance (1978) in: The photosynthetic bacteria (Clayton R.K and Sistrom W.R. eds.) pp. 471–511, Plenum Press, New York and London.Google Scholar
  11. 11]
    Kakitani, T., Honig, B. and Crofts, AR (1982) Biophys. J. 39, 57–63.PubMedCrossRefGoogle Scholar
  12. 12]
    Crielaard, W., Driessen, AJ.M., Molenaar, D., Hellingwerf, KJ. and Konings, W.N. (1988) J. Bacteriol. 170, 1820–1824.PubMedGoogle Scholar
  13. 13]
    Ferguson, Si., Jones, O.T.G., Kell, D.B. and Sorgato, M.L. (1979) Biochem. J. 180, 75–85.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Wim Crielaard
    • 1
  • Klaas J. Hellingwerf
    • 1
  • Wil N. Konings
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations