Multiple Antenna Complexes in Various Purple Photosynthetic Bacteria

  • Iwan Bissig
  • Regula Verena Wagner-Huber
  • René A. Brunisholz
  • Herbert Zuber
Part of the FEMS Symposium book series (FEMSS)

Abstract

Under anaerobic conditions purple photosynthetic bacteria are capable of phototrophic growth. They can convert light energy to chemical energy (to a proton gradient) with the help of membrane bound photochemical reaction centres and an electron recycling system (e. g. cytochrom bc, complex). In bright day light the absorption capacity of bacteriochlorophyll pigments of reaction centres is limited to 1 to 10 photons per second, although some orders more could be processed1. Therefore, it is inevitable that organisms increase the number of absorbing pigments in order to prevent light saturation of reaction centres even at optimal light conditions. Purple bacteria have solved this problem by the synthesis of light-harvesting pigment-protein-complexes which are specialized in absorbing light energy and delivering it to the photochemical reaction centre where charge separation takes place.

Keywords

Core Complex Purple Bacterium Antenna Complex FEBS Letter Purple Sulphur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glazer, A. N., J. Biol. Chem. 264 (1), 1–4 (1989).PubMedGoogle Scholar
  2. 2.
    Brunisholz, R. A., Cuendet, P. A., Theiler, R., and Zuber, H., FEBS Letters 129 (1), 150–154 (1981).CrossRefGoogle Scholar
  3. 3.
    Brunisholz, R. A., Suter, F., and Zuber, H., Hoppe-Seyler’s Z. Physiol. Chem. 365, 675–688 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    Brunisholz, R. A., Wiemken, V., Suter, F., Bachofen, R., and Zuber, H., Hoppe-Seyler’s Z. Physiol. Chem. 365, 689–701 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    Wechsler, T., Brunisholz, R., Suter, F., Fuller, R. C., and Zuber, H., FEBS Letters 191 (1), 34–38 (1985).CrossRefGoogle Scholar
  6. 6.
    Brunisholz, R. A., Jay, F., Suter, F., and Zuber, H., Biol. Chem. Hoppe-Seyler 366, 87–98 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    Wechsler, T. D., Brunisholz, R. A., Frank, G., Suter, F., and Zuber, H., FEBS Letters 210, 189–194 (1987).CrossRefGoogle Scholar
  8. 8.
    Bissig, L, Brunisholz, R. A., Suter, F., Cogdell, R. C., and Zuber, H., Z. Naturforsch. 43c, 77–83 (1988).Google Scholar
  9. 9.
    Wagner-Huber, R., Brunisholz, R. A., Bissig, I., Frank, G., and Zuber, H., FEBS Letters 233 (1), 7–11 (1988).CrossRefGoogle Scholar
  10. 10.
    Brunisholz, R. A., Bissig, L, Wagner-Huber, R. V., Frank, G., Suter, F., Niederer, E., and Zuber, H., Z. Naturforsch. 44c (5/6), 407–414 (1989).Google Scholar
  11. 11.
    Theiler, R., Suter, F., Wiemken, V., and Zuber, H., Hoppe-Seyler’s Z. Physiol. Chem. 365, 703–719 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    Brunisholz, R. A., Bissig, I., Niederer, E., Suter, F., and Zuber, H., Progress in Photosynth. Research, (Ed. Biggins), Martinus Nijhoff Publ., 11. 1. 13.Google Scholar
  13. 13.
    Bissig, I., ‘Die Primärstrukturanalyse der Antennenpolypeptide von Rhodopseudomonas acidophila, Chromatium vinosum und Ectothiorhodospira halophila’, Dissertation ETH Zürich Nr. 8945 (1989).Google Scholar
  14. 14.
    Tadros, M. H., Suter, F., Drews, G., and Zuber, H., Eur. J. Biochem. 129, 533–536 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    Tadros, M. H., Frank, G., Zuber, H., and Drews, G., FEBS Letters 190 (1), 41–44 (1985).CrossRefGoogle Scholar
  16. 16.
    Tadros, M. H., Suter, F., Seydewitz, H. H., Witt, I., Zuber, H., and Drews, G., FEBS Letters 138, 209–212 (1984).Google Scholar
  17. 17.
    Zuber, H., Brunisholz, R., Sidler, W., Photosynthesis, (Ed. J. Amesz), Elsevier Science Publishers B. V., (Biomedical Division), 233–271 (1987).Google Scholar
  18. 18.
    Zuber, H., TIBS 11, 414–419 (1986).Google Scholar
  19. 19.
    Zuber, H., The Light Reactions, (Ed. J. Barber), Elsevier Science Publishers B. V. (Biomedical Division), 198–251 (1987).Google Scholar
  20. 20.
    Zuber, H., Photochem. Photobiol. 42 (6), 821–844 (1985).CrossRefGoogle Scholar
  21. 21.
    Brunisholz, R. A., and Zuber, H., Photosynthetic Light-Harvesting Systems, Ed. Scheer and Schneider, de Gruyter, 103–114 (1987).Google Scholar
  22. 22.
    Thornber, J. P., Trosper, T. L., and Strouse, C. E., in: The Photosynthetic Bacteria, (Clayton, R. K., and Sistrom, W. R, eds.), Plenum Press, New York, 133–160 (1978).Google Scholar
  23. 23.
    Thornber, J. P., Cogdell, R. J., Pierson, B. K., and Seftor, R. E. B., J. Cell. Biochem. 23, 159–169 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    Cogdell, R. J., and Thornber, J. P., FEBS Letters 122 (1), 1–8 (1980).CrossRefGoogle Scholar
  25. 25.
    Cogdell, R. J., and Thornber, J. P., Chlorophyll Organization and Energy Transfer in Photosynthesis, CIBA Foundation Symposium 61, 61–79 (1979).Google Scholar
  26. 26.
    Dawkins, D.J., Ferguson, L.A., and Cogdell, R., The structure of the “core” of the purple bacterial photosynthetic unit, in Photosynthetic Light-Harvesting Systems, Scheer, H. and Schneider, S., Eds., Walter de Gruyter, Berlin, New York, 115 ff. (1988).Google Scholar
  27. 27.
    Engelhardt, H., Guckenberger, R., Hegerl, R., and Baumeister, W., Ultramicroscopy 16, 395–410 (1985).CrossRefGoogle Scholar
  28. 28.
    Engelhardt, H., Baumeister, W., and Saxton, W. O., Arch. Microbiol. 135, 169–175 (1983).CrossRefGoogle Scholar
  29. 29.
    Engelhardt, H., Engel, A., and Baumeister, W., Proc. Natl. Acad. Sci. 83, 8972–8976 (1986).CrossRefGoogle Scholar
  30. 30.
    Stark, W., Kühlbrandt, W., Wildhaber, I., Wehrli, E., and Mähletaler, K., EMBO J. 3, 777–783 (1984).PubMedGoogle Scholar
  31. 31.
    Mechler, B., and Oelze, J., Arch. Microbiol. 118, 91–114 (1978).CrossRefGoogle Scholar
  32. 32.
    Brunisholz, R. A., Steiner, R., Scheer, H., and Zuber, H., FEBS Lett. (submitted).Google Scholar
  33. 33.
    Brunisholz, R. A., Zuber, H., Valentine, J., Lindsay, J. G., Woolley, K. J., and Cogdell, R. J., Biochem. Biophys. Acta 849, 295–303 (1986).CrossRefGoogle Scholar
  34. 34.
    Brunisholz, R. A., and Zuber, H., Experientia 43, 672 (1987).Google Scholar
  35. 35.
    Thornber, J. P., Biochemistry 9 (13), 2688–2698 (1970).PubMedCrossRefGoogle Scholar
  36. 36.
    Imhoff, J. F., Int. J. Syst. Bacteriol. 34 (3), 338–339 (1984).CrossRefGoogle Scholar
  37. 37.
    Frank, G., Methods in Protein Sequence Analysis. Proceedings of the 7th Int. Conf., Ed. Brigitte Wittmann-Liebold, Springer-Verlag, Berlin, 116–121 (1989).CrossRefGoogle Scholar
  38. 38.
    Steiner, R., ‘In vivo und in vitro Untersuchungen an den Bakteriochlorophyll b haltigen Organismen Ectothiorhodospira halochloris, Ectothiorhodospira abdelmalekii und Rhodopseudomonas viridis’,Inaugural-Dissertation, Ludwig-Maximilian-Universität München (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Iwan Bissig
    • 1
  • Regula Verena Wagner-Huber
    • 1
  • René A. Brunisholz
    • 1
  • Herbert Zuber
    • 1
  1. 1.Institut für Molekularbiologie und BiophysikETH-HönggerbergZürichSwitzerland

Personalised recommendations