Genetic Analysis of the Cyanobacterial Light-Harvesting Antenna Complex

  • Nicole Tandeau de Marsac
  • Didier Mazel
  • Véronique Capuano
  • Thierry Damerval
  • Jean Houmard
Part of the FEMS Symposium book series (FEMSS)


To harvest light energy the cyanobacteria have developed supramolecular structures called phycobilisomes. These fan-like structures, regularly arrayed and perpendicularly attached to the protoplasmic surface of the photosynthetic membranes (thylakoids), funnel photons primarily into the photosystem II reaction centers which contain the chlorophyll a-protein complexes. Phycobilisomes are water soluble complexes made up of at least twelve different structural proteins accounting for up to 50% of the total cell protein. In these complexes, the major proteins are phycobiliproteins whose correct assembly into functional phycobilisomes depends upon linker polypeptides.1


Sulfur Deprivation Linker Polypeptide Core Substructure Vegetative Filament Complementary Chromatic Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Tandeau de Marsac, Phycobilisomes and complementary chromatic adaptation in cyanobacteria, Bull. Inst. Pasteur 81: 201–254 (1983).Google Scholar
  2. 2.
    E. Gantt, Phycobilisomes, Annu. Rev. Plant Physiol. 32: 327–347 (1981).CrossRefGoogle Scholar
  3. 3.
    E. Gantt, Phycobilisomes, in: “Encyclopedia of Plant Physiology, New Series,” A. Staehelin, and C. Arntzen, eds., pp 1–18, Springer-Verlag (1984).Google Scholar
  4. 4.
    A. N. Glazer, Phycobilisomes: structure and dynamics, Annu. Rev. Microbiol. 36: 173–198 (1982).Google Scholar
  5. 5.
    A. N. Glazer, Phycobilisome. A macromolecular complex optimized for light energy transfer, Biochim. Biophys. Acta 768: 29–51 (1984).CrossRefGoogle Scholar
  6. 6.
    A. N. Glazer, Light harvesting by phycobilisomes, Annu. Rev. Biophys. Biophys. Chem. 14: 47–77 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    A. N. Glazer, Phycobilisomes: assembly and attachment, in: “The Cyanobacteria,” P. Fay, and C. van Baalen, eds., pp 69–94, Elsevier Science Publishers (1987)Google Scholar
  8. 8.
    A. N. Glazer, and A. Melis, Photochemical reaction centers: structure, organization, and function, Annu. Rev. Plant Physiol. 38: 11–45 (1987).CrossRefGoogle Scholar
  9. 9.
    A. N. Glazer, Light guides: Directional energy transfer in a photosynthetic antenna, J. Biol. Chem. 264: 1–4 (1989).PubMedGoogle Scholar
  10. 10.
    B. A. Zilinskas, and L.S. Greenwald, Phycobilisome structure and function, Photosynth. Res. 10: 7–35 (1986).CrossRefGoogle Scholar
  11. 11.
    R. Rippka, and M. Herdman, Division patterns and cellular differentiation in cyanobacteria, Ann. Microbiol. (Inst. Pasteur) 136A: 33–39 (1985).CrossRefGoogle Scholar
  12. 12.
    N. Tandeau de Marsac, D. Mazel, T. Damerval, G. Guglielmi, V. Capuano, and J. Houmard, Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation, Photosynth. Res. 18: 99–132 (1988).CrossRefGoogle Scholar
  13. 13.
    A. N. Glazer, D.J. Lundell, G. Yamanaka, and R.C. Williams, The structure of a “simple” phycobilisome. Ann. Microbiol. (Inst. Pasteur) 134 B: 159–180 (1983).Google Scholar
  14. 14.
    L. Bogorad, Phycobiliproteins and complementary chromatic adaptation, Annu. Rev. Plant. Physiol. 26: 369–401 (1975).CrossRefGoogle Scholar
  15. 15.
    A. R. Grossman, P.G. Lemaux, and P.B. Conley, Regulated synthesis of phycobilisome components, Photochem. Photobiol. 44: 827–837 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Houmard, V. Capuano, T. Coursin, and N. Tandeau deMarsac, Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. strain PCC 7601: occurrence of a multigene family, J. Bacteriol. 170: 5512–5521 (1988).PubMedGoogle Scholar
  17. 17.
    D. Mazel, and P. Marlière, Adaptative eradication of methionine and cysteine from cyanobacterial light-harvesting proteins, Nature, in press.Google Scholar
  18. 18.
    V. Capuano, D. Mazel, N. Tandeau de Marsac, and J. Houmard, Complete nucleotide sequence of the red-light specific set of phycocyanin genes from the cyanobacterium Calothrix PCC 7601, Nucl. Acids Res. 16: 1626 (1988).CrossRefGoogle Scholar
  19. 19.
    P. B. Conley, P.G. Lemaux, and A.R. Grossman, Molecular characterization of evolution of sequences encoding light-harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon, J. Mol. Biol. 199: 447–465 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    P. B. Conley, P.G. Lemaux, T.L. Lomax, and A.R. Grossman, Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon, Proc. Natl. Acad. Sci. USA 83: 3924–3928 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Mazel, G. Guglielmi, J. Houmard, W. Sidler, D.A. Bryant, and N. Tandeau de Marsac, Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601, Nucl. Acids Res. 14: 8279–8290 (1986).CrossRefGoogle Scholar
  22. 22.
    D. Mazel, J. Houmard, and N. Tandeau de marsac, A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light harvesting antenna, Mol. Gen. Genet. 211: 296–304 (1988).CrossRefGoogle Scholar
  23. 23.
    T. L. Lomax, P.B. Conley, J. Schilling, and A.R. Grossman, Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA, J. Bacteriol. 169: 2675–2684 (1987).PubMedGoogle Scholar
  24. 24.
    J. Houmard, V. Capuano, T. Coursin, and N. Tandeau Marsac, Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal acceptor in cyanobacterial phycobilisomes, Mol. Microbiol. 2: 101–107 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Reuter, and W. Wehrmeyer, Core substructure in Mastigocladus laminosus phycobilisomes: I. Microheterogeneity in two of three allophycocyanin core complexes, Arch. Microbiol. 150: 534–540 (1988).CrossRefGoogle Scholar
  26. 26.
    L.K. Anderson, and F.A. Eiserling, Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis 6701, J. Mol. Biol. 191: 441–451 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    O.D. Canaani, and E. Gantt, Circular dichroism and polarized fluorescence characteristics of blue-green algal allophycocyanins, Biochemistry 19: 2950–2956 1980 ).PubMedCrossRefGoogle Scholar
  28. 28.
    J. C. Gingrich, D.J. Lundell, and A.N. Glazer, Core substructure in cyanobacterial phycobilisomes, J. Cell Biochem. 22: 1–14 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Guglielmi, and G. Cohen-Bazire, Etude taxonomique d’un genre de cyanobactéries Oscillatoriacae: le genre Pseudanabaena Lauterborn. II. Analyse de la composition moléculaire et de la structure des phycobilisomes, Protistologica XX: 393–413 (1984).Google Scholar
  30. 30.
    B. A. Zilinskas, B.K. Zimmerman, and E. Gantt, Allophycocyanin forms isolated from Nostoc sp. Phycobilisomes, Photochem. Photobiol. 27: 587–595 (1978).CrossRefGoogle Scholar
  31. 31.
    D.A. Bryant, Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcus sp. PCC 7002, in: “Light-energy transduction in photosynthesis: Higher plants and bacterial models” S.E. Stevens, Jr., and D.A. Bryant, eds., pp 62–90, The American Society of Plant Physiology (1988).Google Scholar
  32. 32.
    W. R. Belknap, and R. Haselkorn, Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena, EMBO J. 6: 871–884 (1987).PubMedGoogle Scholar
  33. 33.
    J. Houmard, D. Mazel, C. Moguet, D.A. Bryant, and N. Tandeau de Marsac, Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301, Mol. Gen. Genet. 205: 404–410 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    A. R. Grossman, P.G. Lemaux, P.B. Conley, B.U. Bruns, and L.K. Anderson, Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon andtheir regulated expression during complementary chromatic adaptation, Photosynth. Res. 17: 23–56 (1988).CrossRefGoogle Scholar
  35. 35.
    N. Tandeau de Marsac, and J. Houmard, Advances in cyanobacterial molecular genetics, in: “The cyanobacteria,” P. Fay, and C. van Baalen, eds., pp 251–302, Elsevier, Amsterdam (1987).Google Scholar
  36. 36.
    L. Bogorad, S.M. Gendel, J.H. Haury, and K.-P. Koller, Photomorphogenesis and complementary chromatic adaptation in Fremyella diplosiphon, in: “Photosynthetic prokaryotes: cell differentiation and function, G.C. Papageorgiou, and L. Packer, eds., pp 119–126, Elsevier Biomedical, New York (1983).Google Scholar
  37. 37.
    S. Gendel, I. Ohad, and L. Bogorad, Control of phycoerythrin synthesis during chromatic adaptation, Plant Physiol. 64: 786–790 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    S. R. Kalla, L.K. Lind, J. Lidholm, and P. Gustafsson, Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans U’l’EX 625, J. Bacteriol. 170: 2961–2970 (1988).PubMedGoogle Scholar
  39. 39.
    A. P. Zucconi, and J.T., Beatty, Posttranscriptional regulation by light of the steady-state levels of mature B800–850 light-harvesting, J. Bacteriol. 170: 877–882 (1988).PubMedGoogle Scholar
  40. 40.
    M. Herdman, and R. Rippka, Cellular differentiation: hormogonia and baeocytes, Meth. in Enzymol. 167: 232–242 (1988).CrossRefGoogle Scholar
  41. 41.
    K. Csiszàr, J. Houmard, T. Damerval, and N. Tandeau de Marsac, Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: occurrence of an antisense RNA complementary to three overlapping transcripts, Gene 60: 29–37 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Damerval, J. Houmard, G. Guglielmi, K. Csiszàr, and N. Tandeau de Marsac, A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene 54: 83–92 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    N. Tandeau de Marsac, D. Mazel, D. A. Bryant, and J. Houmard, Molecular cloning and nucleotide sequence of a developmentally regulated gene from the cyanobacterium Calothrix PCC 7601: a gas vesicle protein gene, Nucl. Acids Res. 13: 7223–7236 (1985).CrossRefGoogle Scholar
  44. 44.
    R. Oelmüller, P.B., Conley, N., Federspiel, W.R., Briggs, and A.R., Grossman, Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphon to different light qualities, Plant Physiol. 88: 1077–1083 (1988).PubMedCrossRefGoogle Scholar
  45. 45.
    S. S. Golden, M.S. Nalty, and D.-S.C. Cho, Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans, J. Bacteriol. 171: 24–29 (1989).PubMedGoogle Scholar
  46. 46.
    F. Nagy, S.A. Kay, and N-H. Chua, Gene regulation by phytochrome, Trends Genet. 4: 37–42 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Nicole Tandeau de Marsac
    • 1
  • Didier Mazel
    • 1
  • Véronique Capuano
    • 1
  • Thierry Damerval
    • 1
  • Jean Houmard
    • 1
  1. 1.Département de Biochimie et Génétique Moléculaire, Institut PasteurUnité de Physiologie Microbienne (C.N.R.S, U.R.A. D1129)Paris cedex 15France

Personalised recommendations