Advertisement

Phycobilisomes of the Cyanobacterium Synechococcus SP. PCC 7002: Structure, Function, Assembly, and Expression

  • Donald A. Bryant
  • Jianhui Zhou
  • Gail E. Gasparich
  • Robert de Lorimier
  • Gerard Guglielmi
  • Veronica L. Stirewalt
Part of the FEMS Symposium book series (FEMSS)

Abstract

The cyanobacterial photosynthetic apparatus is remarkably similar in structure and function to that found in the chloroplasts of eucaryotic algae and higher plants (Bryant, 1987). Four major multiprotein complexes of the thylakoids—the Photosystem II complex = the water-plastoquinone photo-oxidoreductase; the cytochrome b6/f complex= the plastoquinol-plastocyanin (cytochrome c553) oxidoreductase; the Photosystem I complex = plastocyanin (cytochrome c553)-ferredoxin (flavodoxin) photo-oxidoreductase; and the ATP synthase—have been shown to be rather similar in all oxygenic procaryotes and eucaryotes studied. The predominant differences among the photosynthetic apparatuses in the various algae and higher plants derives from the considerable diversity that exists in the light-harvesting antennae systems among these organisms. In eucaryotic algae and higher plants, the light-harvesting complexes for Photosystem I and Photosystem II are a diverse collection of carteno-chlorophyll protein complexes that in general are integral membrane components (Owens, 1988; Thornber et al., 1988). Such antenna systems are also found in certain procaryotes such as Prochloron sp. and Prochlorothrix hollandica (Bullerjahn et al., 1987). However, in the cyanobacteria, in the chloroplasts of the eucaryotic red algae, and in the cyanelles of certain phylogenetically ambiguous eucaryotes such as Cyanophora paradoxa, the light-harvesting antenna complexes for Photosystem II are large, multiprotein complexes composed of water-soluble proteins, the phycobilisomes, which are attached to the thylakoid surface in close proximity to the Photosystem II reaction centers (Bryant, 1987).

Keywords

Linker Polypeptide Prochlorothrix Hollandica Agmenellum Quadruplicatum Phycobilisome Core Eucaryotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruce, D., Brimble, S., and Bryant, D. A., 1989, State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002, Biochim. Biophys. Acta, 974: 66–73.PubMedCrossRefGoogle Scholar
  2. Bryant, D. A., 1987, The cyanobacterial photosynthetic apparatus: comparison to those of higher plants and photosynthetic bacteria, in “Photosynthetic Picoplankton,” T. Platt and W. K. W. Li. eds., Canadian Bulletin of Fisheries and Aquatic Sciences, Vol. 214, Department of Fisheries and Oceans, Ottawa, Canada, pp. 423–500.Google Scholar
  3. Bryant, D. A., 1988, Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcus sp. PCC 7002, in: “Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models,” S. E. Stevens, Jr. and D. A. Bryant, eds., American Society of Plant Physiologists, Rockville, pp. 62–90.Google Scholar
  4. Bryant, D. A., de Lorimier, R., Guglielmi, G., and Stevens, S. E. Jr., 1989, Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis, Arch. Microbiol., submitted for publication.Google Scholar
  5. Bryant, D. A., Dubbs, J. M., Fields, P. I., Porter, R. D., and de Lorimier, R., 1985, Expression of phycobiliprotein genes in Escherichia coli, FEMS Microbiol. Lett., 29: 343–349.CrossRefGoogle Scholar
  6. Bryant, D. A., Glazer, A. N., and Eiserling, F. A., 1976, Characterization and structural properties of the major biliproteins of Anabaena sp., Arch. Microbiol., 110: 61–75.PubMedCrossRefGoogle Scholar
  7. Bryant, D. A., Guglielmi, G., Tandeau de Marsac, N., Castet, A.-M., CohenBazire, G., 1979, The structure of cyanobacterial phycobilisomes: a model, Arch. Microbiol., 123: 113–127.CrossRefGoogle Scholar
  8. Bullerjahn, G. S., Matthijs, H. C. P., Mur, L. R., and Sherman, L. A., 1987, Chlorophyll-protein composition of the thylakoid membrane from Prochlorothrix hollandica, a prokaryote containing chlorophyll b, Eur. J. Biochem., 168: 295–300.PubMedCrossRefGoogle Scholar
  9. Buzby, J.S., Porter, R. D., and Stevens, S. E. Jr., 1983, Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties, J. Bacteriol., 154: 1446–1450.PubMedGoogle Scholar
  10. Buzby, J. S., Porter, R. D., and Stevens, S. E. Jr., 1985, Expression of the Escherichia coli lac Z gene on a plasmid vector in a cyanobacterium, Science, 230: 805–807.PubMedCrossRefGoogle Scholar
  11. Cohen-Bazire, G. and Bryant, D. A., 1982, Phycobilisomes: composition and structure, in: “The Biology of the Cyanobacteria,” N. G. Carr and B. A. Whitton, eds., Blackwell Scientific, Oxford, pp. 143–190.Google Scholar
  12. de Lorimier, R., Bryant, D. A., Porter, R. D., Liu, W.-Y., Jay, E., and Stevens, S. E. Jr., 1984, Genes for the a and ß subunits of phycocyanin. Proc. Natl. Acad. Sci. USA, 81: 7946–7950.PubMedCrossRefGoogle Scholar
  13. de Lorimier, R., Guglielmi, G., Bryant, D. A., and Stevens, S. E. Jr., 1989a, Structure and mutation of a gene encoding a 33 kDa phycocyanin-associated linker polypeptide, Arch. Microbiol., submitted for publication.Google Scholar
  14. de Lorimier, R., Guglielmi, G., Bryant, D. A., and Stevens, S. E. Jr., 1989b, Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide, Biochim. Biophys. Acta, submitted for publication.Google Scholar
  15. Gantt, E., 1988, Phycobilisomes: assessment of the core structure and thylakoid interaction, in: “Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models,” S. E. Stevens, Jr. and D. A. Bryant, eds., American Society of Plant Physiologists, Rockville, pp. 91–101.Google Scholar
  16. Gardner, E. E., Stevens, S. E. Jr., and Fox, J. L., 1980, Purification and characterization of the C-phycocyanin from Agmenellum quadruplicatum, Biochim. Biophys. Acta, 624: 187–195.PubMedCrossRefGoogle Scholar
  17. Gasparich, G. E., 1989, The effects of various environmental stress conditions on gene expression in the cyanobacterium Synechococcus sp. PCC 7002, The Pennsylvania State University, Ph. D. dissertation.Google Scholar
  18. Gasparich, G. E., Buzby, J., Bryant, D. A., Porter, R. D., and Stevens, S. E. Jr., 1987, The effects of light intensity and nitrogen starvation on the phycocyanin promoter in the cyanobacterium Synechococcus sp. PCC 7002, in: “Progress in Photosynthesis Research, Vol. IV,” J. Biggins, ed., Martinus-Nijhoff, Dordrecht, pp. 761–764.Google Scholar
  19. Glazer, A. N., 1982, Phycobilisomes: structure and dynamics, Ann. Rev. Microbiol., 36: 173–198.CrossRefGoogle Scholar
  20. Glazer, A. N., 1984, Phycobilisome. A macromolecular complex optimized for light energy transfer, Biochim. Biophys. Acta, 768: 29–51.CrossRefGoogle Scholar
  21. Glazer, A. N., 1985, Light harvesting by phycobilisomes, Ann. Rev. Biophys. Biophys. Chem., 14: 47–77.CrossRefGoogle Scholar
  22. Glazer, A. N., 1989, Light Guides. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem., 264: 1–4.PubMedGoogle Scholar
  23. Grossman, A. R., Lemaux, P. G., Conley, P. B., Bruns, B. U., and Anderson, L. K., 1988, Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation, Photosyn. Res., 17: 23–56.CrossRefGoogle Scholar
  24. Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y., and Mandel, M., 1979, Deoxyribonucleic acid base composition of cyanobacteria, J. Gen. Microbiol., 111: 63–71.CrossRefGoogle Scholar
  25. Herdman, M., Janvier, M., Rippka, R., and Stanier, R. Y., 1979b, Genome size of cyanobacteria, J. Gen. Microbiol., 111: 73–85.CrossRefGoogle Scholar
  26. Lambert, D. H. and Stevens, S. E. Jr., 1986, Photoheterotrophic growth of Agmenellum quadruplicatum PR-6, J. Bacteriol., 165: 654–656.PubMedGoogle Scholar
  27. Maxson, P., Sauer, K., Zhou, J., Bryant, D. A., and Glazer, A. N., 1989, Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides, Biochim. Biophys. Acta, in press.Google Scholar
  28. Murphy, R. C., Bryant, D. A., Porter, R. D., and Tandeau de Marsac, N., 1987, Molecular cloning and characterization of the rec A gene from the cyanobacterium Synechococcus sp. strain PCC 7002, J. Bacteriol., 169: 2739–2747.PubMedGoogle Scholar
  29. Murphy, R. C., Bryant, D. A., and Porter, R. D., 1989, Nucleotide sequence and further characterization of the Synechococcus sp. PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the E. coli recA gene, J. Bacteriol., submitted for publication.Google Scholar
  30. Owens, T. G., 1988, Light-harvesting antenna systems in the chlorophyll a/c- containing algae, in: “Light-energy Transduction in Photosynthesis: Higher Plant and Bacterial Models,” S. E. Stevens and D. A. Bryant, eds., American Society of Plant Physiologists, Rockville, pp. 122–136.Google Scholar
  31. Pilot, T. J. and Fox, J. L., 1984, Cloning and sequencing of the genes encoding the a and ß subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum, Proc. Natl. Acad. Sci. USA, 81: 6983–6987.PubMedCrossRefGoogle Scholar
  32. Porter, R. D., 1986, Transformation in cyanobacteria, CRC Crit. Rev. Microbiol., 13: 111–132.CrossRefGoogle Scholar
  33. Porter, R. D., Buzby, J. S., Pilon, A., Fields, P. I., Dubbs, J. M., and Stevens, S. E. Jr., 1986, Genes for the cyanobacterium Agmenellum quadruplicatum isolated by complementation: characterization and production of perodiploids, Gene, 41: 249–260.PubMedCrossRefGoogle Scholar
  34. Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M, and Hackert, M. L., 1986, Crystal structure analysis and refinement at 2.5. of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting, J. Mol. Biol., 188: 651–676.PubMedCrossRefGoogle Scholar
  35. Schirmer, T., Bode, W., Huber, R., 1987, Refined three-dimensional struc-tures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 â resolution. A common principle of phycobilin-protein interaction, J. Mol. Biol., 196: 677–695.PubMedCrossRefGoogle Scholar
  36. Tandeau de Marsac, N., Mazel, D., Damerval, T., Guglielmi, G., Capuano, V., and Houmard, J., 1988, Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation, Photosyn. Res., 18: 99–132.CrossRefGoogle Scholar
  37. Thornber, J. P., Peter, G. F., Chitnis, P. R., Nechushtai, R., and Vainstein, A., 1988, The light-harvesting complex of photosystem II of higher plants, in: “Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models,” S. E. Stevens, Jr. and D. A. Bryant, eds., American Society of Plant Physiologists, Rockville, pp. 137–154.Google Scholar
  38. Zuber, H., 1987, The structure of light-harvesting pigment-protein complexes, in: “The Light Reactions,” J. Barber, ed., Elsevier Biomedical, Amsterdam, pp. 197–259.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Donald A. Bryant
    • 1
  • Jianhui Zhou
    • 1
  • Gail E. Gasparich
    • 1
  • Robert de Lorimier
    • 1
  • Gerard Guglielmi
    • 1
  • Veronica L. Stirewalt
    • 1
  1. 1.Department of Molecular and Cell BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations