Soluble Cytochrome Synthesis in Rhodobacter Sphaeroides

  • Timothy J. Donohue
  • Janine P. Brandner
  • Janice E. Flory
  • Barbara J. MacGregor
  • Marc A. Rott
  • Brenda A. Schilke
Part of the FEMS Symposium book series (FEMSS)


Purple non-sulfur photosynthetic bacteria such as Rhodobacter sphaeroides can grow by aerobic respiration, by photosynthesis under anaerobic conditions in the light, or by anaerobic respiration in the dark if electron acceptors such as dimethylsulfoxide (DMSO), trimethylamine-Noxide or nitrous oxide are present (1) (R. sphaeroides sp. denitrificans can also use nitrate or nitrite; 2,3). Given this metabolic and energetic versatility, it is not surprising that this Gram-negative bacterium contains many cytochromes whose synthesis can be environmentally regulated.


Photosynthetic Bacterium Aerobic Respiration Rhodobacter Sphaeroides Rhodobacter Capsulatus Photosynthetic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiley, P. J., and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroídes. Microbiol. Rev. 52: 50.Google Scholar
  2. 2.
    Michalski, W., D. J. Miller, and D. J. D. Nicholas. 1986. Changes in the cytochrome composition of Rhodopseudomonas sphaeroídes sp. denitrifícans grown under denitrifying conditions. Biochim. Biophys. Acta 849: 304.Google Scholar
  3. 3.
    Itoh, M., S. Mizukami, K. Matsuura, and T. Satoh. 1989. Involvement of the cyt b/c1 complex and cytochrome c2 in the electron transfer pathway for NO reduction in a photodenitrifier Rhodobacter sphaeroides sp. denítrifícans. FEBS Lett. 244: 81.CrossRefGoogle Scholar
  4. 4.
    Zannoni, D., and A. Baccarini-Melandri. 1980. Respiratory electron flow in facultative photosynthetic bacteria, p. 183. In D. Knowles (ed.), Diversity of bacterial respiratory systems. CRC Press, Inc., Boca Raton, Fla.Google Scholar
  5. 5.
    Meyer, T. E., and M. D. Kamen. 1982. New Perspectives on c-type cytochromes. Adv. Prot. Chem. 35: 105.Google Scholar
  6. 6.
    Tiede, D. M. 1987. Cytochrome c orientation in electron-transfer complexes with photosynthetic reaction centers of Rhodopseudomonas sphaeroides and when bound to the surface of negatively charged membranes: Characterization by optical linear dichroism. Biochemistry 26: 397.Google Scholar
  7. 7.
    Crofts, A. R., and C. A. Wraight. 1983. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta 726: 149.Google Scholar
  8. 8.
    Takamiya, K. 1983. Properties of the cytochrome c oxidase activity of cytochrome b561 from photoanaerobically grown Rhodopseudomonas sphaeroides. Plant and Cell Physiol. 24: 1457.Google Scholar
  9. 9.
    Crofts, A. R., S. W. Meinhardt, and J. R. Bowyer. 1982. The electron transport chain of Rhodopseudomonas sphaeroides, p. 477. In B. L. Trumpower (ed.) Functions of quinones in energy conserving systems. Academic Press Inc., New York.Google Scholar
  10. 10.
    Donohue, T. J., A. G. McEwan, S. Van Doren, A. R. Crofts and S. Kaplan. 1988. Phenotypic and genetic characterization of cytochrome c2-deficient mutants of Rhodobacter sphaeroides. Biochemistry 27: 1918.PubMedCrossRefGoogle Scholar
  11. 11.
    Feher, G., J. P. Allen, M. Y. Okamura, and D. C. Rees. 1989. Structure and function of bacterial reaction centres. Nature 339: 111.CrossRefGoogle Scholar
  12. 12.
    Allen, J. P. 1988. Crystallization and preliminary X-ray diffraction analysis of cytochrome c2 from Rhodobacter sphaeroides J. Mol. Biol. 204: 495.Google Scholar
  13. 13.
    Tiede, D. M., D. E. Budil, J. Tang, O. El-Kabbani, J. R. Norris, C.-H. Chang, and M. Schiffer. 1988. Symmetry breaking structures involved in the docking of cytochrome c and primary electron transfer in reaction centers of Rhodobacter sphaeroides, p. 13. In J. Breton and A. Vermeglio (eds.). The photosynthetic bacterial reaction center. Plenum Publishing Corp. New York.CrossRefGoogle Scholar
  14. 14.
    Daldal, F., S. Cheng, J. Applebaum, E. Davidson, and R. C. Prince. 1986. Cytochrome c2 is not essential for photosynthetic growth of Rhodopseudomonas capsulatus. Proc. Natl. Acad. Sci. USA 83: 2012.Google Scholar
  15. 15.
    Prince, R. C., E. Davidson, C. E. Haith, and F. Daldal. 1986. Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome b/cl complex to the photochemical reaction center. Biochemistry 25: 5208.CrossRefGoogle Scholar
  16. 16.
    Crofts, A. R., and P. M. Wood. 1978. Photosynthetic electron transport chains of plants and bacteria and their role as proton pumps. Curr. Top. Bioenerg. 7: 175.Google Scholar
  17. 17.
    Merchant, S., and L. Bogorad. 1987. The Cu(II)-repressible plastidic cytochrome c: Cloning and sequence of a complementary DNA for the preapoprotein. J. Biol. Chem. 262: 9062.Google Scholar
  18. 18.
    Ferguson, S. J., J. B. Jackson, and A. G. McEwan. 1987. Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of role in redox balancing during photosynthesis. FEMS Microbiol. Rev. 46: 117.Google Scholar
  19. 19.
    McEwan, A. G., A. J. Greenfield, H. G. Wetzstein, J. B. Jackson, and S. J. Ferguson. 1985. Nitrous oxide reduction by members of the family Rhodospírillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J. Bacteriol. 164: 823.PubMedGoogle Scholar
  20. 20.
    McEwan, A. G., D. J. Richardson, H. Hudig, S. J. Ferguson, and J. B. Jackson. 1989. Identification of cytochromes involved in electron transport to trimethylamine-N-oxide/dimethylsulphoxide reductase in Rhodobacter capsulatus. Biochim. Biophys. Acta 973: 308.Google Scholar
  21. 21.
    Meyer, T. E., and M. A. Cusanovich. 1985. Soluble cytochrome composition of the purple phototrophic bacterium Rhodopseudomonas sphaeroides ATCC 17023. Biochim. Biophys. Acta 807: 308.Google Scholar
  22. 22.
    Bartsch, R. G., R. P. Ambler, T. E. Meyer, and M. A. Cusanovich. 1989. Effect of aerobic growth conditions on the soluble cytochrome content of the purple phototrophic bacterium Rhodobacter sphaeroides: Induction of cytochrome c554. Arch. Biochem. Biophys. 271: 433.Google Scholar
  23. 23.
    Prince, R. C., A. Baccarini-Melandri, G. A. Hauska, B. A. Melandri, and A. R. Crofts. 1975. Asymmetry of an energy transducing membrane: the location of cytochrome c2 in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Biochim. Biophys. Acta 387: 212.Google Scholar
  24. 24.
    Rott, M. A., and T. J. Donohue. Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. J. Bacteriol. (In press).Google Scholar
  25. 25.
    Fitch, J. V. Cannac, T. E. Meyer, M. A. Cusanovich, G. Tollin, J. Van Beeumen, M. A. Rott, and T. J. Donohue. 1989. Expression of a cytochrome c2 isozyme restores photosynthetic growth of Rhodobacter sphaeroides mutants lacking the wild type cytochrome c2 gene. Arch. Biochem. Biophys. 271: 502.Google Scholar
  26. 26.
    Brandner, J. P., A. G. McEwan, S. Kaplan, and T. J. Donohue. 1989. Expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. J. Bacteriol. 171: 360.PubMedGoogle Scholar
  27. 27.
    Orlando, J. A. 1962. Rhodopseudomonas sphaeroides cytochrome c-553. Biochim. Biophys. Acta 57: 373.Google Scholar
  28. 28.
    Donohue, T. J., A. G. McEwan, and S. Kaplan. 1986. Cloning, DNA sequence and expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. J. Bacteriol. 168: 962.PubMedGoogle Scholar
  29. 29.
    Pfeifer, K., B. Arcangioli, and L. Guarente. 1987. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49: 9.PubMedCrossRefGoogle Scholar
  30. 30.
    Guarente, L., and T. Mason. 1983. Herne regulates transcription of the CYC1 gene of S. cerevísíae via an upstream activation site. Cell 32: 1279-1286.Google Scholar
  31. 31.
    McEwan, A. G., S. Kaplan, and T. J. Donohue. 1989. Synthesis of the Rhodobacter sphaeroides cytochrome c2 in Escherichia coli. FEMS Microbiol. Lett. 59: 253.Google Scholar
  32. 32.
    Cole, J. A. 1968. Cytochrome c552 and nitrite reduction in Escherichia colí. Biochim. Biophys. Acta 162: 356.Google Scholar
  33. 33.
    Varga, A., and S. Kaplan. Construction, expression and localization of a CycA::PhoA fusion protein in Rhodobacter sphaeroides and Escherichia coli. J. Bacteriol. (In press).Google Scholar
  34. 34.
    Manoil, C., and J. Beckwith. 1985. TnphoA: A transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82: 8129.Google Scholar
  35. 35.
    Hudig, H. N. Kaufmann, and G. Drews. 1986. Respiratory deficient mutants of Rhodopseudomonas capsulata. Arch. Microbiol. 145: 378.Google Scholar
  36. 36.
    Davidson, E., R. C. Prince, F. Daldal, G. Hauska, and B. L. Marrs. 1987. Rhodobacter capsulatus MT113: a single mutation results in the absence of c-type cytochromes and in the absence of the cyt b/cl complex. Biochim. Biophys. Acta 890: 292.Google Scholar
  37. 37.
    Kranz, R. G. 1989. Isolation of mutants and genes involved in cytochromes c biosynthesis in Rhodobacter capsulatus. J. Bacteriol. 171: 456.PubMedGoogle Scholar
  38. 38.
    Vernon, L. P., and M. D. Kamen. 1954. Hematin compounds in photosynthetic bacteria. J. Biol. Chem. 211: 643.Google Scholar
  39. 39.
    Dickerson, R. E., R. Timkovich, and R. J. Almassy. 1976. The cytochrome fold and the evolution of bacterial energy metabolism. J. Mol. Biol. 100: 473.Google Scholar
  40. 40.
    Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for the construction of all-inclusive phylogentic trees. Proc. Acad. Natl. Sci. USA 83: 217.Google Scholar
  41. 41.
    Clark, A. J., N. P. J. Cotton, and J. B. Jackson. 1983. The relation between membrane ionic current and ATP synthesis in chromatophores from Rhodopseudomonas capsulate. Biochim. Biophys. Acta 723: 440.Google Scholar
  42. 42.
    Deisenhofer, J., 0. Epp, K. Miki, R. Huber, and H. Michel. 1984. X-ray structure analysis of a membrane protein complex. J. Mol. Biol. 180: 385.Google Scholar
  43. 43.
    Stewart, V., 1988. Nitrate respiration in relation to facultative metabolism in Enterobacteria. Microbiol. Rev. 52: 190.Google Scholar
  44. 44.
    Richardson, D. J., G. F. King, D. J. Kelly, A. G. McEwan, S. J. Ferguson, and J. B. Jackson. 1988. The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch. Microbiol. 150: 131.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Timothy J. Donohue
    • 1
  • Janine P. Brandner
    • 1
  • Janice E. Flory
    • 1
  • Barbara J. MacGregor
    • 1
  • Marc A. Rott
    • 1
  • Brenda A. Schilke
    • 1
  1. 1.Bacteriology DepartmentUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations