A New Method for Determining Configuration Interaction Wave Functions for the Electronic States of Atoms and Molecules: The Vector Method

  • R. F. HausmanJr.
  • C. F. Bender
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)


At least one procedure has been developed for accurately describing the ground and excited electronic states of atoms and molecules. The method, termed configuration interaction (CI), uses expansion techniques for correcting the SCF wave function ϕ 0 ,
$$ \psi = C_0 \varphi _0 + \sum\limits_{i = 1}^N {C_i \varphi _i \equiv C^ + \varphi } $$
The correction functions, or configurations, ϕ i are usually linear combinations of Slater determinants.


Wave Function Potential Energy Surface Configuration Interaction Rydberg State Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results, Addison Wesley, Reading, Massachusetts (1972).Google Scholar
  2. 2.
    H. F. Schaefer III and C. F. Bender, Multiconfiguration wave functions for the water molecule, J. Chem. Phys. 55, 1720 (1971).CrossRefGoogle Scholar
  3. 3.
    C. F. Bender and E. R. Davidson, A natural orbital based energy calculation for He-H and Li-H, J. Phys. Chem. 70, 2675 (1966).CrossRefGoogle Scholar
  4. 4.
    Z. Gershgorn and I. Shavitt, An application of perturbation theory ideas in configuration interaction calculations, Int. J. Quantum Chem. 2, 751 (1968).CrossRefGoogle Scholar
  5. 5.
    L. R. Kahn, P. J. Hay, and I. Shavitt, Theoretical Study of curve crossing; ab initio calculations on the four lowest 1Σ+ states of LiF, J. Chem. Phys. 61, 3530 (1974).CrossRefGoogle Scholar
  6. 6.
    R. J. Buenker and S. D. Peyerimhoff, Individualized configuration selection in CI calculations with subsequent energy extrapolation, Theor. Chim. Acta 35, 33 (1974).CrossRefGoogle Scholar
  7. 7.
    E. R. Davidson, Selection of the proper canonical Roothaan-Hartree-Fock orbitals for particular applications. I. Theory, J. Chem. Phys. 57, 1999 (1972).CrossRefGoogle Scholar
  8. 8.
    C. F. Bender and H. F. Schaefer III, New theoretical evidence for the nonlinearity of the triplet ground state of methylene, J. Chem. Phys. 55, 4798 (1971).CrossRefGoogle Scholar
  9. 9.
    C. F. Bender and E. R. Davidson, A theoretical calculation of the potential curves of the Be-Be molecule, J. Chem. Phys. 47, 4972 (1967).CrossRefGoogle Scholar
  10. 10.
    W. Meyer, PNO-CI studies of the electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017 (1973).CrossRefGoogle Scholar
  11. 11.
    A. K. Q. Siu and E. R. Davidson, A study of the ground state wavefunction of carbon monoxide, Int. J. Quantum. Chem. 4, 223 (1970).CrossRefGoogle Scholar
  12. 12.
    A. K. Q. Siu and E. F. Hayes, Configuration interaction procedure based on the calculation of perturbation theory natural orbitals: Application to H2 and LiH, J. Chem. Phys. 61, 37 (1974).CrossRefGoogle Scholar
  13. 13.
    D. R. Hartree, W. Hartree, and B. Swirles, Self-consistent field, including exchange and superposition of configurations, with some results for oxygen, Philos. Trans. R. Soc. London, Ser. A 238, 229 (1939).CrossRefGoogle Scholar
  14. 14.
    C. F. Bender and H. F. Schaefer, Electronic splitting between the 2B1 and 2A1 states of the NH2 radical, J. Chem. Phys. 55, 4798 (1971).CrossRefGoogle Scholar
  15. 15.
    A. Pipano and I. Shavitt, The use of complex symmetry orbitals in large scale molecular configuration interaction calculations (preprint).Google Scholar
  16. 16.
    J. Paldus, Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems, J. Chem. Phys. 61, 5231 (1974).CrossRefGoogle Scholar
  17. 17.
    W. G. Harper and C. W. Patterson, A unitary calculus for electronic orbitals (preprint submitted to Phys. Rev.). Google Scholar
  18. 18.
    R. K. Nesbet, Algorithm for diagonalization of large matrices, J. Chem. Phys. 43, 311 (1965).CrossRefGoogle Scholar
  19. 19.
    I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices, J. Comput. Phys. 11, 90 (1973).CrossRefGoogle Scholar
  20. 20.
    E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Compnt. Phys. 17, 87 (1975).CrossRefGoogle Scholar
  21. 21.
    B. Roos, A new method for large-scale CI calculations, Chem. Phys. Letts. 15, 153 (1972).CrossRefGoogle Scholar
  22. 22.
    P. Seigbahn and H. F. Schaefer III, Potential energy surfaces for H + Li2 thaythe LiH + Li ground state surface from large scale configuration interaction, J. Chem. Phys. 62, 3488 (1975).CrossRefGoogle Scholar
  23. 23.
    J. B. McGrory, The twobody interaction in nuclear shell model calculations, in: The Two-body Force in Nuclei (Proceedings of the Gulf Lake Conference, 1971) (S. M. Austin and G. M. Crawley, eds.), Plenum Press, New York (1972).Google Scholar
  24. 24.
    J. D. Talman, Shell model calculation of the even parity states of 20Ne, Crocker Nuclear Laboratory Report CNL-UCD-21, April 1964, Crocker Nuclear Laboratory, University of California, Davis, California.Google Scholar
  25. 25.
    R. R. Whitehead, A numerical approach to nuclear shell model calculations, Nucl. Phys. A 182, 290 (1972).CrossRefGoogle Scholar
  26. 26.
    R. F. Hausman, Jr., S. D. Bloom, and C. F. Bender, A new technique for describing the electronic states of atoms and molecules—the vector method, Chem. Phys. Lett. 32, 483 (1975).CrossRefGoogle Scholar
  27. 27.
    J. H. Wilkinson, The Algebraic Eigenvalue problem, Oxford University Press, London (1965).Google Scholar
  28. 28.
    C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand. 45, 255 (1950).CrossRefGoogle Scholar
  29. 29.
    P. A. Kollman, C. F. Bender, and S. Rothenberg, Theoretical prediction of the existence and properties of the lithium hydride dimer, J. Am. Chem. Soc. 94, 8016 (1972).CrossRefGoogle Scholar
  30. 30.
    R. P. Hosteny, R. R. Gilman, T. H. Dunning, Jr., A. Pipano, and I. Shavitt, Comparisons of the slater and contracted Gaussian basis sets in SCF and CI calculations on H2O, Chem. Phys. Lett. 7, 325 (1970).CrossRefGoogle Scholar
  31. 31.
    T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first row atoms, J. Chem. Phys. 53, 2823 (1970).CrossRefGoogle Scholar
  32. 32.
    P. K. Pearson, private communication.Google Scholar
  33. 33.
    E. N. Lassettre and A. Skerbele, Generalized oscillator strengths for 7.4 eV excitation of H2O at 300, 400, and 500 eV kinetic energy. Singlet—triplet energy differences, J. Chem. Phys. 60, 2464 (1974).CrossRefGoogle Scholar
  34. 34.
    F. W. E. Knoop, H. H. Brongersma, and L. J. Oosterhoff, Triplet excitation of water and methanol by lowenergy electron-impact spectroscopy, Chem. Phys. Lett. 13, 20 (1972).CrossRefGoogle Scholar
  35. 35.
    S. Trajmar, W. Williams, and A. Kupperman, Detection and identification of triplet states of H2O by electron impact, J. Chem. Phys. 54, 2274 (1971).CrossRefGoogle Scholar
  36. 36.
    K. Watanabe and M. Zelikoff, Absorption coefficients of water vapor in the vacuum untraviolet, J. Opt. Soc. Am. 43, 753 (1953).CrossRefGoogle Scholar
  37. 37.
    R. P. Hosteny, A. P. Hinds, A. C. Wahl, and M. Krauss, MC SCF calculations on the lowest triplet state of H2O, Chem. Phys. Lett. 23, 9 (1973).CrossRefGoogle Scholar
  38. 38.
    J. A. Horsley and W. H. Fink, Ab initio calculations of some low-lying excited-states of H2O, J. Chem. Phys. 50, 750 (1969).CrossRefGoogle Scholar
  39. 39.
    K. J. Miller, S. R. Mielczarek, and M. Krauss, Energy surface and generalized oscillator strength of the 1A Rydberg state of H2O, J. Chem. Phys. 51, 26 (1969).CrossRefGoogle Scholar
  40. 40.
    W. J. Hunt and W. A. Goddard III, Excited states of H2O using improved virtual orbitals, Chem. Phys. Lett. 3, 414 (1969).CrossRefGoogle Scholar
  41. 41.
    R. A. Gangi and R. F. W. Bader, Study of the potential surfaces of the ground and first excited singlet states of H2O, J. Chem. Phys. 55, 5369 (1971).CrossRefGoogle Scholar
  42. 42.
    R. F. W. Bader and R. A. Gangi, The lowest singlet and triplet potential surfaces of H2O, Chem. Phys. Lett. 6, 312 (1970).CrossRefGoogle Scholar
  43. 43.
    D. M. Bishop and Ay-Ju A. Wu, An investigation of the 1B1 excited states of water, Theo. Chim. Acta (Berlin) 21, 287 (1971).CrossRefGoogle Scholar
  44. 44.
    D. Yaeger, V. McKoy, and G. A. Segal, Assignments in the electronic spectrum of water, J. Chem. Phys. 61, 755 (1974).CrossRefGoogle Scholar
  45. 45.
    R. J. Buenker and S. D. Peyerimoff, Calculation of the electronic spectrum of water (preprint 1974).Google Scholar
  46. 46.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Atomic electron populations by molecular orbital theory, J. Symp. Faraday Soc. 2, 15 (1968).CrossRefGoogle Scholar
  47. 47.
    H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley and Sons, Inc., New York (1944).Google Scholar
  48. 48.
    N. W. Winter, private communication (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. F. HausmanJr.
    • 1
  • C. F. Bender
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations