Skip to main content

A New Method for Determining Configuration Interaction Wave Functions for the Electronic States of Atoms and Molecules: The Vector Method

  • Chapter
Book cover Methods of Electronic Structure Theory

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 3))

Abstract

At least one procedure has been developed for accurately describing the ground and excited electronic states of atoms and molecules. The method, termed configuration interaction (CI), uses expansion techniques for correcting the SCF wave function ϕ 0 ,

$$ \psi = C_0 \varphi _0 + \sum\limits_{i = 1}^N {C_i \varphi _i \equiv C^ + \varphi } $$
((1))

The correction functions, or configurations, ϕ i are usually linear combinations of Slater determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. F. Schaefer III, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results, Addison Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  2. H. F. Schaefer III and C. F. Bender, Multiconfiguration wave functions for the water molecule, J. Chem. Phys. 55, 1720 (1971).

    Article  CAS  Google Scholar 

  3. C. F. Bender and E. R. Davidson, A natural orbital based energy calculation for He-H and Li-H, J. Phys. Chem. 70, 2675 (1966).

    Article  CAS  Google Scholar 

  4. Z. Gershgorn and I. Shavitt, An application of perturbation theory ideas in configuration interaction calculations, Int. J. Quantum Chem. 2, 751 (1968).

    Article  CAS  Google Scholar 

  5. L. R. Kahn, P. J. Hay, and I. Shavitt, Theoretical Study of curve crossing; ab initio calculations on the four lowest 1Σ+ states of LiF, J. Chem. Phys. 61, 3530 (1974).

    Article  CAS  Google Scholar 

  6. R. J. Buenker and S. D. Peyerimhoff, Individualized configuration selection in CI calculations with subsequent energy extrapolation, Theor. Chim. Acta 35, 33 (1974).

    Article  CAS  Google Scholar 

  7. E. R. Davidson, Selection of the proper canonical Roothaan-Hartree-Fock orbitals for particular applications. I. Theory, J. Chem. Phys. 57, 1999 (1972).

    Article  CAS  Google Scholar 

  8. C. F. Bender and H. F. Schaefer III, New theoretical evidence for the nonlinearity of the triplet ground state of methylene, J. Chem. Phys. 55, 4798 (1971).

    Article  CAS  Google Scholar 

  9. C. F. Bender and E. R. Davidson, A theoretical calculation of the potential curves of the Be-Be molecule, J. Chem. Phys. 47, 4972 (1967).

    Article  CAS  Google Scholar 

  10. W. Meyer, PNO-CI studies of the electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017 (1973).

    Article  CAS  Google Scholar 

  11. A. K. Q. Siu and E. R. Davidson, A study of the ground state wavefunction of carbon monoxide, Int. J. Quantum. Chem. 4, 223 (1970).

    Article  CAS  Google Scholar 

  12. A. K. Q. Siu and E. F. Hayes, Configuration interaction procedure based on the calculation of perturbation theory natural orbitals: Application to H2 and LiH, J. Chem. Phys. 61, 37 (1974).

    Article  CAS  Google Scholar 

  13. D. R. Hartree, W. Hartree, and B. Swirles, Self-consistent field, including exchange and superposition of configurations, with some results for oxygen, Philos. Trans. R. Soc. London, Ser. A 238, 229 (1939).

    Article  Google Scholar 

  14. C. F. Bender and H. F. Schaefer, Electronic splitting between the 2B1 and 2A1 states of the NH2 radical, J. Chem. Phys. 55, 4798 (1971).

    Article  CAS  Google Scholar 

  15. A. Pipano and I. Shavitt, The use of complex symmetry orbitals in large scale molecular configuration interaction calculations (preprint).

    Google Scholar 

  16. J. Paldus, Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems, J. Chem. Phys. 61, 5231 (1974).

    Article  Google Scholar 

  17. W. G. Harper and C. W. Patterson, A unitary calculus for electronic orbitals (preprint submitted to Phys. Rev.).

    Google Scholar 

  18. R. K. Nesbet, Algorithm for diagonalization of large matrices, J. Chem. Phys. 43, 311 (1965).

    Article  CAS  Google Scholar 

  19. I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices, J. Comput. Phys. 11, 90 (1973).

    Article  Google Scholar 

  20. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Compnt. Phys. 17, 87 (1975).

    Article  Google Scholar 

  21. B. Roos, A new method for large-scale CI calculations, Chem. Phys. Letts. 15, 153 (1972).

    Article  Google Scholar 

  22. P. Seigbahn and H. F. Schaefer III, Potential energy surfaces for H + Li2 thaythe LiH + Li ground state surface from large scale configuration interaction, J. Chem. Phys. 62, 3488 (1975).

    Article  Google Scholar 

  23. J. B. McGrory, The twobody interaction in nuclear shell model calculations, in: The Two-body Force in Nuclei (Proceedings of the Gulf Lake Conference, 1971) (S. M. Austin and G. M. Crawley, eds.), Plenum Press, New York (1972).

    Google Scholar 

  24. J. D. Talman, Shell model calculation of the even parity states of 20Ne, Crocker Nuclear Laboratory Report CNL-UCD-21, April 1964, Crocker Nuclear Laboratory, University of California, Davis, California.

    Google Scholar 

  25. R. R. Whitehead, A numerical approach to nuclear shell model calculations, Nucl. Phys. A 182, 290 (1972).

    Article  CAS  Google Scholar 

  26. R. F. Hausman, Jr., S. D. Bloom, and C. F. Bender, A new technique for describing the electronic states of atoms and molecules—the vector method, Chem. Phys. Lett. 32, 483 (1975).

    Article  CAS  Google Scholar 

  27. J. H. Wilkinson, The Algebraic Eigenvalue problem, Oxford University Press, London (1965).

    Google Scholar 

  28. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand. 45, 255 (1950).

    Article  Google Scholar 

  29. P. A. Kollman, C. F. Bender, and S. Rothenberg, Theoretical prediction of the existence and properties of the lithium hydride dimer, J. Am. Chem. Soc. 94, 8016 (1972).

    Article  CAS  Google Scholar 

  30. R. P. Hosteny, R. R. Gilman, T. H. Dunning, Jr., A. Pipano, and I. Shavitt, Comparisons of the slater and contracted Gaussian basis sets in SCF and CI calculations on H2O, Chem. Phys. Lett. 7, 325 (1970).

    Article  CAS  Google Scholar 

  31. T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first row atoms, J. Chem. Phys. 53, 2823 (1970).

    Article  CAS  Google Scholar 

  32. P. K. Pearson, private communication.

    Google Scholar 

  33. E. N. Lassettre and A. Skerbele, Generalized oscillator strengths for 7.4 eV excitation of H2O at 300, 400, and 500 eV kinetic energy. Singlet—triplet energy differences, J. Chem. Phys. 60, 2464 (1974).

    Article  CAS  Google Scholar 

  34. F. W. E. Knoop, H. H. Brongersma, and L. J. Oosterhoff, Triplet excitation of water and methanol by lowenergy electron-impact spectroscopy, Chem. Phys. Lett. 13, 20 (1972).

    Article  CAS  Google Scholar 

  35. S. Trajmar, W. Williams, and A. Kupperman, Detection and identification of triplet states of H2O by electron impact, J. Chem. Phys. 54, 2274 (1971).

    Article  CAS  Google Scholar 

  36. K. Watanabe and M. Zelikoff, Absorption coefficients of water vapor in the vacuum untraviolet, J. Opt. Soc. Am. 43, 753 (1953).

    Article  CAS  Google Scholar 

  37. R. P. Hosteny, A. P. Hinds, A. C. Wahl, and M. Krauss, MC SCF calculations on the lowest triplet state of H2O, Chem. Phys. Lett. 23, 9 (1973).

    Article  CAS  Google Scholar 

  38. J. A. Horsley and W. H. Fink, Ab initio calculations of some low-lying excited-states of H2O, J. Chem. Phys. 50, 750 (1969).

    Article  CAS  Google Scholar 

  39. K. J. Miller, S. R. Mielczarek, and M. Krauss, Energy surface and generalized oscillator strength of the 1A Rydberg state of H2O, J. Chem. Phys. 51, 26 (1969).

    Article  CAS  Google Scholar 

  40. W. J. Hunt and W. A. Goddard III, Excited states of H2O using improved virtual orbitals, Chem. Phys. Lett. 3, 414 (1969).

    Article  CAS  Google Scholar 

  41. R. A. Gangi and R. F. W. Bader, Study of the potential surfaces of the ground and first excited singlet states of H2O, J. Chem. Phys. 55, 5369 (1971).

    Article  CAS  Google Scholar 

  42. R. F. W. Bader and R. A. Gangi, The lowest singlet and triplet potential surfaces of H2O, Chem. Phys. Lett. 6, 312 (1970).

    Article  CAS  Google Scholar 

  43. D. M. Bishop and Ay-Ju A. Wu, An investigation of the 1B1 excited states of water, Theo. Chim. Acta (Berlin) 21, 287 (1971).

    Article  CAS  Google Scholar 

  44. D. Yaeger, V. McKoy, and G. A. Segal, Assignments in the electronic spectrum of water, J. Chem. Phys. 61, 755 (1974).

    Article  Google Scholar 

  45. R. J. Buenker and S. D. Peyerimoff, Calculation of the electronic spectrum of water (preprint 1974).

    Google Scholar 

  46. W. J. Hehre, R. F. Stewart, and J. A. Pople, Atomic electron populations by molecular orbital theory, J. Symp. Faraday Soc. 2, 15 (1968).

    Article  Google Scholar 

  47. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley and Sons, Inc., New York (1944).

    Google Scholar 

  48. N. W. Winter, private communication (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausman, R.F., Bender, C.F. (1977). A New Method for Determining Configuration Interaction Wave Functions for the Electronic States of Atoms and Molecules: The Vector Method. In: Schaefer, H.F. (eds) Methods of Electronic Structure Theory. Modern Theoretical Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0887-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0887-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0889-9

  • Online ISBN: 978-1-4757-0887-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics