Pair Correlation Theories

  • Werner Kutzelnigg
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

In the simplest possible description of an n-electron system, one one-electron function (spin-orbital) is associated with each electron and the n -electron wave function is a Slater determinant built up from these spin-orbitals. The one-to-one correspondence between electrons and spin-orbitals gives an acceptable first-order description only for closed-shell and certain open-shell states. A one-electron theory that is applicable in general to open-shell states as well is characterized by assigning sets of electrons to sets of degenerate spin-orbitals, where the number of electrons within one set can be equal to or smaller than the dimension of the irreducible representation spanned by the degenerate set of spin-orbitals. An example is the well-known characterization of an atomic state by its configuration,(1) e.g., for the carbon ground state 1s22s22p2, without specifying the ms and ml values. (For a general discussion of closed- and open-shell states in the framework of rigorous quantum mechanics, see Refs. 2 and 3.)

Keywords

Correlation Energy Configuration Interaction Cluster Expansion Slater Determinant Double Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, New York (1951).Google Scholar
  2. 2.
    W. Kutzelnigg and V. H. Smith, Jr., Open- and closed-shell states in few-particle quantum mechanics. I. Definitions, Int. J. Quantum Chem. 2, 531–552 (1968). CrossRefGoogle Scholar
  3. 3.
    V. H. Smith, Jr., and W. Kutzelnigg, Open- and closed-shell states in few-particle quantum mechanics. II. Classification of atomic states, Int. J. Quantum Chem. 2, 553–562 (1968).CrossRefGoogle Scholar
  4. 4.
    E. Steiner, Theory of correlated wave functions. II. The symmetry properties of atomic correlated wave functions, J. Chem. Phys. 45, 328–337 (1966).CrossRefGoogle Scholar
  5. 5.
    O. Sinanoglu, Many-electron theory of atoms and molecules. I. Shells, electron pairs versus many-electron correlation, J. Chem. Phys. 36, 706–717 (1962);CrossRefGoogle Scholar
  6. 5a.
    O. Sinanoglu, Many-electron theory of atoms and molecules. II, J. Chem. Phys. 36, 3198–3208 (1962);CrossRefGoogle Scholar
  7. 5b.
    O. Sinanoglu, Many-electron theory of atoms, molecules, and their interactions, Adv. Chem. Phys. 6, 315–412 (1964).CrossRefGoogle Scholar
  8. 6.
    E. P. Wigner and F. Seitz, Constitution of metallic sodium I, II, Phys. Rev. 43, 804–810 (1933);CrossRefGoogle Scholar
  9. 6a.
    E. P. Wigner and F. Seitz, Constitution of metallic sodium I, II, Phys. Rev. 46, 509–524 (1934).CrossRefGoogle Scholar
  10. 7.
    N. R. Kestner and O. Sinanoglu, Intermolecular-potential-energy curves; theory and calculations on the helium—helium potential, J. Chem. Phys. 45, 194–207 (1966).CrossRefGoogle Scholar
  11. 8.
    A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, The molecular orbitals theory of chemical valency. XVI. A theory of paired electrons in polyatomic molecules, Proc. R. Soc. London, Ser. A 220, 446–455 (1953).CrossRefGoogle Scholar
  12. 9.
    J. M. Parks and R. G. Parr, Theory of separated electron pairs, J. Chem. Phys. 28, 335–345 (1958).CrossRefGoogle Scholar
  13. 10.
    R. McWeeny, The density matrix in many-electron quantum mechanics. I. Generalized product functions. Factorization and physical interpretation of the density matrix, Proc. R. Soc. London Ser. A 253, 242–259 (1959).CrossRefGoogle Scholar
  14. 11.
    W. Kutzelnigg, Direct determination of natural orbitals and natural expansion coefficients of many-electron wave functions. I. Natural orbitals in the geminal product approximation, J. Chem. Phys. 40, 3640–3647 (1964).CrossRefGoogle Scholar
  15. 12.
    R. Ahlrichs and W. Kutzelnigg, Direct calculation of approximate natural orbitals and natural expansion coefficients of atomic and molecular electronic wave functions. II. Decoupling of the pair equations and calculation of the pair correlation energies for the Be and LiH ground states, J. Chem. Phys. 48, 1819–1832 (1968).CrossRefGoogle Scholar
  16. 13.
    W. Kutzelnigg, Electron correlation and electron pair theories, Fortschr. Chem. Forsch. 41, 31–73 (1973).Google Scholar
  17. 14.
    E. L. Mehler, K. Ruedenberg, and D. M. Silver, Electron correlation and the separated pair approximation in diatomic molecules. II. Lithium hydride and boron hydride, J. Chem. Phys., 52, 1181–1205 (1970).CrossRefGoogle Scholar
  18. 15.
    M. Krauss and A. W. Weiss, Pair correlation in closed-shell systems, J. Chem. Phys. 40, 80–85 (1964).CrossRefGoogle Scholar
  19. 16.
    H. Primas, in: Modern Quantum Chemistry (O. Sinanoglu, ed.), Vol. 2, pp. 45–74, Academic Press, New York (1965).Google Scholar
  20. 17.
    H. D. Ursell, The evaluation of Gibb’s phase integral for imperfect gases, Proc. Cambridge Philos. Soc. 23, 685–697 (1927).CrossRefGoogle Scholar
  21. 18.
    J. E. Mayer, The statistical mechanics of condensing systems. I., J. Chem. Phys. 5, 67–73 (1937).CrossRefGoogle Scholar
  22. 19.
    B. Kahn and G. E. Uhlenbeck, Theory of condensation, Physica 5, 399–416 (1938).CrossRefGoogle Scholar
  23. 20.
    R. Brout and P. Caruthers, Lectures on the Many-Electron Problem, Gordon and Breach, New York (1969).Google Scholar
  24. 21.
    F. Coester, Bound states of a many-particle system, Nucl. Phys. 7, 421–424 (1958).CrossRefGoogle Scholar
  25. 22.
    R. K. Nesbet, Brueckner’s theory and the method of superposition of configurations, Phys. Rev. 109, 1632–1638 (1958).CrossRefGoogle Scholar
  26. 23.
    W. Brenig, Zweiteilchennäherungen des Mehrkörperproblems. I. Nucl. Phys. 4, 363–374 (1957).CrossRefGoogle Scholar
  27. 24.
    F. Coester and H. Kümmel, Short range correlations in nuclear wave functions, Nucl. Phys. 17, 477–485 (1960).CrossRefGoogle Scholar
  28. 25.
    H. Kümmel, Compound pair states in imperfect Fermi gases, Nucl. Phys. 22, 177–183 (1961).CrossRefGoogle Scholar
  29. 26.
    J. da Providencia, Linked graph expansion for the logarithm of the norm of many-body wave functions, Nucl. Phys. 44, 572–578 (1963);CrossRefGoogle Scholar
  30. 26a.
    J. da Providencia, Cluster expansion of operator averages for systems of many particles, Nucl. Phys. 46, 401–412 (1963).CrossRefGoogle Scholar
  31. 27.
    K. Kumar, Validity of the two-particle approximation in the many-body problem, Nucl. Phys. 21, 99–105 (1960).CrossRefGoogle Scholar
  32. 28.
    R. K. Nesbet, Electronic correlation in atoms and molecules, Adv. Chem. Phys. 9, 321–363 (1965).CrossRefGoogle Scholar
  33. 29.
    P.-O. Löwdin, Studies in perturbation theory. V. Some aspects on the exact self-consistent field theory, J. Math. Phys. 3, 1171–1184 (1962).CrossRefGoogle Scholar
  34. 30.
    W. Kutzelnigg and V. H. Smith,Jr., On different criteria for the best independent-particlemodel approximation, J. Chem. Phys. 41, 896–897 (1964).CrossRefGoogle Scholar
  35. 31.
    R. A. Krumhout, Exact energy self-consistent field, Phys. Rev. 107, 215–219 (1957).CrossRefGoogle Scholar
  36. 32.
    H. Kümmel and J. Q. Zabolitzky, Fully self-consistent Brueckner—Hartree—Fock and renormalized Brueckner—Hartree—Fock calculation for 4He and 160, Phys. Rev. C 7, 547–552 (1973).CrossRefGoogle Scholar
  37. 33.
    J. Cižek, On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods, J. Chem. Phys. 45, 4256–4266 (1966);CrossRefGoogle Scholar
  38. 33a.
    J. Cižek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules, Adv. Chem. Phys. 14, 35–89 (1969).CrossRefGoogle Scholar
  39. 34.
    J. Čižek, J. Paldus, and L. šroubkova, Cluster expansion analysis for delocalized systems, Int. J. Quantum Chem. 3, 149–167 (1969).CrossRefGoogle Scholar
  40. 35.
    J. Čižek and J. Paldus, Correlation problems in atomic and molecular systems. III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods, Int. J. Quantum Chem. 5, 359–379 (1971).CrossRefGoogle Scholar
  41. 36.
    J. Paldus, J. Čižek, and I. Shavitt, Correlation problems in atomic and molecular system. IV. Extended coupled-pair many-electron theory and its application to the borane molecule, Phys. Rev. A 5, 50–67 (1972).Google Scholar
  42. 37.
    H. Kümmel, Theory of many-body wave functions with correlations, Nucl. Phys. A 176, 205–218 (1971).Google Scholar
  43. 38.
    H. Kümmel and H. Lüihrmann, Equations for linked clusters and the energy variational principle, Nucl. Phys. A 191, 525–534 (1972);CrossRefGoogle Scholar
  44. 38a.
    H. Kümmel and H. Lüihrmann, Equation for linked clusters and Brueckner— Bethe theory, Nucl. Phys. A 194, 225–236 (1972).CrossRefGoogle Scholar
  45. 39.
    H. P. Kelly and A. M. Sessler, Correlation effects in many Fermion systems. Multiple-particle excitation expansion, Phys. Rev. 132, 2091–2095 (1963).CrossRefGoogle Scholar
  46. 40.
    H. P. Kelly, Correlation effects in many Fermion systems. II. Linked clusters, Phys. Rev. 134A, 1450–1453 (1964).CrossRefGoogle Scholar
  47. 41.
    R. Brout, Variational methods and the nuclear many-body problem, Phys. Rev.111, 1324–1333 (1958).CrossRefGoogle Scholar
  48. 42.
    B. H. Brandow, Compact-cluster expansion for the nuclear many-body problem, Phys. Rev. 152, 863–882 (1966);CrossRefGoogle Scholar
  49. 42a.
    B. H. Brandow, Linked cluster expansion for the nuclear many-body problem, Rev. Mod. Phys. 39, 771–828 (1967).CrossRefGoogle Scholar
  50. 43.
    K. A. Brueckner, Two-body forces and nuclear saturation. III. Details of the structure of the nucleus, Phys. Rev. 97, 1353–1366;(1955)CrossRefGoogle Scholar
  51. 43a.
    K. A. Brueckner, Many-body problem for strongly interacting particles. II. Linked cluster expansion, Phys. Rev.100, 36–45 (1955).CrossRefGoogle Scholar
  52. 44.
    H. A. Bethe, Nuclear many-body problem, Phys. Rev. 103, 1353–1390 (1956).CrossRefGoogle Scholar
  53. 45.
    J. D. Thouless, The Quantum Mechanics of Many-Body Systems, Academic Press, New York (1961).Google Scholar
  54. 46.
    R. Ahlrichs, Convergence of the 1/Z expansion, Phys. Rev. A 5, 605–614 (1972).Google Scholar
  55. 47.
    D. Layzer, Z. Horak, M. N. Lewis, and D. P. Thompson, Second-order Z-dependent theory of many-electron atoms, Ann. Phys. 29, 101–124 (1964).CrossRefGoogle Scholar
  56. 48.
    J. Linderberg and H. Shull, Electronic correlation energy in 3- and 4-electron atoms, J. Mol. Spectrosc. 5, 1–16 (1960).CrossRefGoogle Scholar
  57. 49.
    M. Cohen and A. Dalgarno, The Hartree energies of the helium sequence, Proc. Phys. Soc. London Ser. A 77, 165 (1961).CrossRefGoogle Scholar
  58. 50.
    S. T. Epstein, Hartree—Fock Hamiltonians and separable nonlocal potentials, J. Chem. Phys. 41, 1045–1046 (1964).CrossRefGoogle Scholar
  59. 51.
    S. T. Epstein, in : Perturbation Theory and Its Applications in Quantum Mechanics (C. H. Wilcox, ed.), pp. 49–56, Wiley, New York (1966).Google Scholar
  60. 52.
    E. Steiner, Theory of correlated wavefunctions. III. Alternative initial approximations, J. Chem. Phys. 46, 1717–1736 (1967).CrossRefGoogle Scholar
  61. 53.
    C. MØller and M. S. Plessett, Note on the approximation treatment for many-electron systems, Phys. Rev. 46, 618–622 (1934).CrossRefGoogle Scholar
  62. 54.
    P. S. Epstein, The Stark effect from the point of view of Schrödinger’s quantum theory, Phys. Rev. 28, 695–710 (1926).CrossRefGoogle Scholar
  63. 55.
    R. K. Nesbet, Configuration interaction in orbital theories, Proc. R. Soc. London Ser. A 230, 312–321 (1955).CrossRefGoogle Scholar
  64. 56.
    P. Claverie, S. Diner, and J. P. Malrieu, The use of perturbation methods for the study of the effects of configuration interaction. I. Choice of the zeroth-order Hamiltonian, Int. J. Quantum Chem. 1, 751–767 (1967).Google Scholar
  65. 57.
    O. Sinanoglu, Theory of electron correlation in atoms and molecules, Proc. R. Soc. London Ser. A 260, 379–392 (1961).CrossRefGoogle Scholar
  66. 58.
    E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willküirlicher Funktionen nach Systemen vorgeschriebener, Math. Ann. 63, 433–476 (1907).CrossRefGoogle Scholar
  67. 59.
    M. Golomb, in : On Numerical Approximation (R. E. Langer, ed.), pp. 275–327, Wisconsin University Press, Madison (1958).Google Scholar
  68. 60.
    D. C. Carlson and J. H. Keller, Eigenvalues of density matrices, Phys. Rev. 121, 659–661 (1961).CrossRefGoogle Scholar
  69. 61.
    A. J. Coleman, Structure of Fermion density matrices, Rev. Mod. Phys. 35, 668–689 (1963).CrossRefGoogle Scholar
  70. 62.
    P.-O. Löwdin and H. Shull, Natural orbitals in the quantum theory of two-electron systems, Phys. Rev. 101, 1730–1739 (1956).CrossRefGoogle Scholar
  71. 63.
    W. Kutzelnigg, Solution of the two-electron problem in quantum mechanics by direct determination of the natural orbitals. I. Theory, Theor. Chim. Acta 1, 327–342 (1963).CrossRefGoogle Scholar
  72. 64.
    W. A. Bingel and W. Kutzelnigg, Symmetry properties of reduced density matrices and natural p-states, Adv. Quantum Chem. 5, 201–218 (1970).CrossRefGoogle Scholar
  73. 65.
    R. Ahlrichs, W. Kutzelnigg, and W. A. Bingel, Solution of the two-electron problem in quantum mechanics by direct calculation of the natural orbitals. III. Refined treatment of the helium atom and the helium-like ions. IV. Application to the ground state of the hydrogen molecule in a one-center expansion, Theor. Chim. Acta 5, 289–304, 305–311 (1966).CrossRefGoogle Scholar
  74. 66.
    W. Kutzelnigg, in: Selected Topics in Molecular Physics (E. Clementi, ed.), pp. 91–102, Verlag Chemie, Weinheim (1972).Google Scholar
  75. 67.
    R. Ahlrichs and F. Driessler, Direct determination of pair natural orbitals. A new method to solve the multiconfiguration Hartree—Fock problem for two-electron wave functions, Theor. Chim. Acta 36, 275–287 (1975).CrossRefGoogle Scholar
  76. 68.
    P. W. Langhoff, Separation theorem for first-order pair-correlation equations, Int. J. Quantum Chem. 7S, 443–448 (1973).CrossRefGoogle Scholar
  77. 69.
    R. McWeeny and E. Steiner, The theory of pair-correlated wave functions, Adv. Quantum Chem. 2, 93–117 (1965).CrossRefGoogle Scholar
  78. 70.
    J. P. Malrieu, Cancellation occurring in the calculation of transition energies by a perturbation development of configuration interaction matrices, J. Chem. Phys. 47, 4555–4558 (1967).CrossRefGoogle Scholar
  79. 71.
    H. P. Kelly, Correlation effects in atoms, Phys. Rev. 131, 684–699 (1963);CrossRefGoogle Scholar
  80. 71a.
    H. P. Kelly, Many-body perturbation theory applied to open-shell atoms, Phys. Rev. 136B, 896–912 (1964);CrossRefGoogle Scholar
  81. 71b.
    H. P. Kelly, Many-body perturbation theory applied to atoms, Phys. Rev. 144, 39–55 (1966);CrossRefGoogle Scholar
  82. 71c.
    H. P. Kelly, Frequencydependent polarizability of hydrogen calculated by many-body theory, Phys. Rev. A 1, 274–279 (1970);CrossRefGoogle Scholar
  83. 71d.
    H. P. Kelly, Applications of many-body diagram techniques in atomic physics, Adv. Chem. Phys. 14, 129–190 (1969).CrossRefGoogle Scholar
  84. 72.
    H. P. Kelly, in : Perturbation Theory and Its Application in Quantum Mechanics (C. H. Wilcox, ed.), pp. 215–241, Wiley, New York (1966).Google Scholar
  85. 73.
    J. Goldstone, Derivation of the Brueckner many-body theory, Proc. R. Soc. London, Ser. A 239, 267–279 (1957).CrossRefGoogle Scholar
  86. 74.
    S. K. Ma and K. A. Brueckner, Correlation energy of an electron gas with a slowly varying high density, Phys. Rev. 165, 18–31 (1968).CrossRefGoogle Scholar
  87. 75.
    K. A. Brueckner and W. Wada, Nuclear saturation and two-body-forces. Self-consistent solution and the effects of the exclusion principle, Phys. Rev. 103, 1008–1016 (1956).CrossRefGoogle Scholar
  88. 76.
    K. A. Brueckner, J. L. Gammel, and H. Weitzner, Theory of finite nuclei, Phys. Rev. 110, 431–445 (1958).CrossRefGoogle Scholar
  89. 77.
    H. A. Bethe and J. Goldstone, Effect of a repulsive core in the theory of complex nuclei, Proc. R. Soc. London Ser. A 238, 551–567 (1957).CrossRefGoogle Scholar
  90. 78.
    L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Properties of nuclear matter, Ann. Phys. 3, 241–274 (1958).CrossRefGoogle Scholar
  91. 79.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957).CrossRefGoogle Scholar
  92. 80.
    N. Bogoljubov, A new method in the theory of superconductivity. I, Soviet Phys. JETP 7, 41–46 (1958).Google Scholar
  93. 81.
    M. A. Robb, Application of many-body perturbation methods in a discrete orbital basis, Chem. Phys. Lett. 20, 274–277 (1973).CrossRefGoogle Scholar
  94. 82.
    R. J. Bartlett and D. M. Silver, Many-body perturbation theory applied to electron pair correlation energies. I. Closed-shell first-row diatomic hydrides, J. Chem. Phys. 62, 3258–3268 (1975).CrossRefGoogle Scholar
  95. 83.
    M. A. Robb, Pair functions and diagrammatic perturbation theory, in : Computational Tech-niques in Quantum Chemistry and Molecular Physics (G. H. F. Diercksen et al., eds.), pp. 435–503, D. Reidel, Dordrecht, Holland (1975).CrossRefGoogle Scholar
  96. 84.
    K. F. Freed, Many-body theories of the electronic structure of atoms and molecules, Annu. Rev. Phys. Chem. 22, 313–346 (1971).CrossRefGoogle Scholar
  97. 85.
    S. Diner, J. P. Malrieu, P. Claverie, and F. Jordan, Fully localized bond orbitals and the correlation problem, Chem. Phys. Lett. 2, 319–323 (1968).CrossRefGoogle Scholar
  98. 86.
    S. Diner, J. P. Malrieu, and P. Claverie, Localized bond orbitals and the correlation problem. I. Perturbation calculation of ground-state energy, Theor. Chim. Acta 13, 1–17 (1969).CrossRefGoogle Scholar
  99. 87.
    J. P. Malrieu, P. Claverie, and S. Diner, Localized bond orbitals and the correlation problem. II. Application to πr-electron systems, Theor. Chim. Acta 13, 18–45 (1969).CrossRefGoogle Scholar
  100. 88.
    S. Diner, J. P. Malrieu, F. Jordan, and M. Gilbert, Localized bond orbitals and the correlation problem. III. Energy up to the third-order in the zero-differential overlap approximation. Application to πr-electron systems, Theor. Chim. Acta 15, 100–110 (1969).CrossRefGoogle Scholar
  101. 89.
    F. Jordani, M. Gilbert, J. P. Malrieu, and V. Pincelli, Localized bond orbitals and the correlation problem. IV. Stability of the perturbation energies with respect to bond hybridization and polarity, Theor. Chim. Acta 15, 211–224 (1969).CrossRefGoogle Scholar
  102. 90.
    C. F. Bender and E. R. Davidson, Correlation energy and molecular properties of hydrogen fluoride, J. Chem. Phys. 47, 360–366 (1967).CrossRefGoogle Scholar
  103. 91.
    T. L. Barr and E. R. Davidson, Nature of the configuration-interaction method of ab initio calculations. I. Neon ground state, Phys. Rev. A1, 644–658 (1970).CrossRefGoogle Scholar
  104. 92.
    R. K. Nesbet, T. L. Barr, and E. R. Davidson, Correlation energy of the neon atom, Chem. Phys. Lett. 4, 203–204 (1969).CrossRefGoogle Scholar
  105. 93.
    A. Weiss, Symmetry-adapted pair correlations in Ne, F , Ne+, and F, Phys. Rev. A 3, 126 (1971).CrossRefGoogle Scholar
  106. 94.
    C. M. Moser and R. K. Nesbet, Atomic Bethe—Goldstone calculations of term splittings, ionization potentials, and electron affinities for B, C, N, 0, F, and Ne. II. Configurational excitations, Phys. Rev. A 6, 1710–1715 (1972).CrossRefGoogle Scholar
  107. 95.
    J. W. Viers, F. E. Harris, and H. F. Schaeffer III, Pair correlations and the electronic structure of neon, Phys. Rev. A 1, 24–27 (1970).CrossRefGoogle Scholar
  108. 96.
    D. A. Micha, Many-body contributions to atomic correlation energies, Phys. Rev. A1, 755–764 (1970).CrossRefGoogle Scholar
  109. 97.
    W. Meyer, Ionization energies of water from PNO-CI calculations, Int. J. Quantum Chem. 5, 341–348 (1971);CrossRefGoogle Scholar
  110. 97a.
    W. Meyer, PNO-CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017–1035 (1973);CrossRefGoogle Scholar
  111. 97b.
    W. Meyer, PNO-CI and CEPA studies of electron correlation effects. II. Potential curves and dipole moment functions of the OH radical, Theor. Chim. Acta 35, 277–292 (1974).CrossRefGoogle Scholar
  112. 98.
    R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. I. Outline of the method for closed-shell states, J. Chem. Phys. 62, 1225–1234 (1975).CrossRefGoogle Scholar
  113. 99.
    R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH3 , NH3 (planar and pyramidal), H2O, OH3, HF, and the Ne atom, J. Chem. Phys. 62, 1235–1247 (1975).CrossRefGoogle Scholar
  114. 100.
    R. Ahlrichs, F. Keil, H. Lischka, W. Kutzelnigg, and V. Staemmler, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. III. The molecules MgH2, A1H3, SiH4, PH3 (planar and pyramidal), H2S, HC1 and the Ar atom, J. Chem. Phys. 63, 455–463 (1975).CrossRefGoogle Scholar
  115. 101.
    R. Ahlrichs, H. Lischka, B. Zurawski, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. IV. The molecules N2, F2, C2H2, C2H4, and C2H6 J. Chem. Phys. 63, 4685–4694 (1975).CrossRefGoogle Scholar
  116. 102.
    K. F. Freed, Many-body approach to electron correlation in atoms and molecules, Phys. Rev. 173, 1–24 (1968).CrossRefGoogle Scholar
  117. 103.
    L. Szasz, Über die Berechnung der Korrelationsenergie der Atomelektronen, Z. Naturforsch. 15a, 909–926 (1960);Google Scholar
  118. 103a.
    L. Szasz, Atomic many-body problem. I. General theory of correlated wave functions, Phys. Rev. 126, 169–181 (1962);CrossRefGoogle Scholar
  119. 103b.
    L. Szasz, Formulation of the quantum-mechanical many-body problem in terms of one- and two-particle functions, Phys. Rev. 132, 936–947 (1963);CrossRefGoogle Scholar
  120. 103c.
    L. Szasz, Pseudopotential theory of atoms and molecules. I. A new method for the calculation of correlated pair functions, J. Chem. Phys. 49, 679–691 (1968).CrossRefGoogle Scholar
  121. 104.
    H. J. Silverstone and O. Sinanoglu, Many-electron theory of nonclosed-shell atoms and molecules. I. Orbital wavefunction and perturbation theory. II. Variational theory, J. Chem. Phys. 44, 1899–1907, 3608–3617 (1966).CrossRefGoogle Scholar
  122. 105.
    V. Staemmler and M. Jungen, Application of the independent electron pair approach to the calculation of excitation energies, ionization potentials, and electron affinities of first row atoms, Theor. Chim. Acta 38, 303 (1975).CrossRefGoogle Scholar
  123. 106.
    W. Meyer, A recent CI method based on pseudonatural orbitals, this volume, Chapter 11.Google Scholar
  124. 107.
    B. Roos, A new method for large-scale CI calculations, Chem. Phys. Lett. 15, 153–159 (1972).CrossRefGoogle Scholar
  125. 108.
    P. Siegbahn and B. Roos, this volume, Chapter 7.Google Scholar
  126. 109.
    H. F. Schaefer III, Ab initio potential curve for the X3/g-state of 02, J. Chem. Phys. 54, 2207–2211 (1971).CrossRefGoogle Scholar
  127. 110.
    R. K. Nesbet, Atomic Bethe-Goldstone equations, Adv. Chem. Phys. 14, 1–34 (1969).CrossRefGoogle Scholar
  128. 111.
    G. A. van der Velde and W. C. Nieuwpoort, Generalized Bethe-Goldstone calculations on molecules, Chem. Phys. Lett. 13, 409–412 (1972).CrossRefGoogle Scholar
  129. 112.
    G. A. van der Velde, Thesis, Groningen (1974).Google Scholar
  130. 113.
    E. L. Mehler, Independent pair-potential correlated wave functions, Int. J. Quantum Chem. S7, 437–442 (1973);CrossRefGoogle Scholar
  131. 113a.
    E. L. Mehler, Orbital correlation effects: The independent pair-potential approximation with application to the ground state and first ionized state of boron hydrides, Theor. Chim. Acta 35, 17–32 (1974).CrossRefGoogle Scholar
  132. 114.
    H. Primas, Generalized perturbation theory for quantum mechanical manyparticle problems, Helv. Phys. Acta 34, 331–351 (1961).Google Scholar
  133. 115.
    R. J. Yaris, Linked cluster theorem and unitarily, J. Chem. Phys. 41, 2419–2421 (1964);CrossRefGoogle Scholar
  134. 115a.
    R. J. Yaris, Cluster expansion and the unitary group, J. Chem. Phys. 42, 3019–3024 (1965).CrossRefGoogle Scholar
  135. 116.
    B. Levy and G. Berthier, Generalized Brillouin theorem for multiconfiguration S.C.F. theories, Int. J. Quantum Chem. 2, 307–314 (1968).CrossRefGoogle Scholar
  136. 117.
    F. Maeder and W. Kutzelnigg, Ab initio calculation of van der Waals constants (C6, C8, C10) for two-valence-electron atoms, including correlation effects, Chem. Phys. Lett. 37, 285 (1976).CrossRefGoogle Scholar
  137. 118.
    H. Margenau and N. R. Kestner, Theory of Intermolecular Forces, Pergamon, New York (1969/71).Google Scholar
  138. 119.
    N. R. Kestner, Chem. Phys. 3, 193 (1974).CrossRefGoogle Scholar
  139. 120.
    W. Meyer, private communication.Google Scholar
  140. 121.
    B. Liu and A. D. McLean, Accurate calculation of the attractive interaction of two ground state helium atoms, J. Chem. Phys. 59, 4557–4558 (1973).CrossRefGoogle Scholar
  141. 122.
    E. Steiner, Theory of correlated wavefunctions. IV. A “configuration interaction plus perturbation” approach, J. Chem. Phys. 46, 1727–1735 (1967).CrossRefGoogle Scholar
  142. 123.
    K. Roby, On the theory of electron correlation in atoms and molecules. II. General cluster expansion theory and the general correlated wave function method, Int. J. Quantum Chem. 6, 101–123 (1972).CrossRefGoogle Scholar
  143. 124.
    E. R. Davidson and C. F. Bender, Correlation energy calculations and unitary transformations for LiH, J. Chem. Phys. 49, 465–466 (1968).CrossRefGoogle Scholar
  144. 125.
    W. Kutzelnigg in : Localization and Delocalization in Quantum Chemistry (O. Chalvet et al., ed.), pp. 143–153, D. Reidel Dordrecht, Holland (1975).CrossRefGoogle Scholar
  145. 126.
    I. Lindgren, The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multiconfigurational model space, J. Phys. B 7, 2441 (1974).CrossRefGoogle Scholar
  146. 127.
    W. Kutzelnigg, Note on perturbation theory of electron correlation, Chem. Phys. Lett. 35, 283–285 (1975).CrossRefGoogle Scholar
  147. 128.
    R. F. Hausman, S. D. Bloom and C. F. Bender, A new technique for describing the electronic states of atoms and molecules—The vector method, Chem. Phys. Lett. 32, 483 (1975).CrossRefGoogle Scholar
  148. 129.
    J. H. van Vleck, Sigma-type doubling and electron spin, Phys. Rev. 33, 467–490 (1929).CrossRefGoogle Scholar
  149. 130.
    H. J. Werner and W. Meyer, Finite perturbation calculations for the static dipole polarizabilities of the first row atoms, Phys. Rev. 13A, 13–16 (1976).CrossRefGoogle Scholar
  150. 131.
    J. S. Binkley and J. A. Pople, Møller–Plessett theory for atomic ground state energies, Int. J. Quantum Chem. 9, 229–236 (1975);J. A. Pople, J. S. Binkley, and R. Seeger, Theoretical models incorporating electron correlation, Int. J. Quantum Chem., to be published.CrossRefGoogle Scholar
  151. 132.
    W. Meyer, Theory of self-consistent pairs. An iterative method for correlated many-electron wavefunctions, J. Chem. Phys. 64, 2901–2907 (1976).CrossRefGoogle Scholar
  152. 133.
    J. da Providencia and C. M. Shakin, Some aspects of short-range correlations in nuclei, Ann. Phys. 30, 95–118 (1964).CrossRefGoogle Scholar
  153. 134.
    W. Meyer and P. Rosmus, PNO-CI and CEPA studies of electron correlation. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys. 63, 2356–2375 (1975).CrossRefGoogle Scholar
  154. 135.
    H. J. Werner and W. Meyer, PNO-CI and PNO-CEPA studies of correlation effects. V. Static dipole polarizabilities of small molecules, Mol. Phys. 31, 855–872 (1976).CrossRefGoogle Scholar
  155. 136.
    F. Keil and R. Ahlrichs, Theoretical study of SN2 reactions. Ab initio computation on HF and CI level, J. Am. Chem. Soc. 98, 4787–4793 (1976).CrossRefGoogle Scholar
  156. 137.
    K. Hoheisel and W. Kutzelnigg, Ab initio calculation including electron correlation of the structure and binding energy of BH5 and B2H7 - , J. Am. Chem. Soc. 97, 6970–6975 (1975).CrossRefGoogle Scholar
  157. 138.
    F. Keil and W. Kutzelnigg, The chemical bond in phosphoranes. Comparative ab initio study of PH3F2 and the hypothetical molecules NH3F2 and PH5, J.Am. Chem. Soc. 97, 3623–3632 (1975).CrossRefGoogle Scholar
  158. 139.
    R. Ahlrichs, Theoretical study of the H5 system, Theor. Chim. Acta 39, 149–160 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Werner Kutzelnigg
    • 1
  1. 1.Ruhr-UniversitätBochumGermany

Personalised recommendations