The Multiconfiguration Self-Consistent Field Method

  • Arnold C. Wahl
  • G. Das
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

The multiconfiguration self-consistent field (MCSCF method), which consists of optimizing both the mixing of several configurations as well as the orbitals of which they are composed, would appear to be a natural extension of the one-configuration SCF method. However, owing to a number of factors the method has not received a great deal of attention until rather recently. First, as recently as a decade ago, SCF wave functions were believed to be “suffiiciently” accurate for most of the interesting properties of a chemical system. Second, the successful implementation of the single configuration SCF method was diffiicult and the implementation of the more complex MCSCF framework proved to be significantly more arduous.

Keywords

Wave Function Secular Equation Single Excitation Symmetry Species Charge Transfer Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Hartree, Calculation of Atomic Structure, John Wiley and Sons, New York (1957).Google Scholar
  2. 2.
    D. R. Hartree and W. Hartree, Proc. R. Soc. London, Ser. A 154, 588 (1936).CrossRefGoogle Scholar
  3. 3.
    C. Froese-Fischer, Comput. Phys. Commun. 1, 152 (1970).CrossRefGoogle Scholar
  4. 4.
    J. P. Desclaux and Y. K. Kim, J. Phys. B 8, 1177 (1975).CrossRefGoogle Scholar
  5. 5.
    A. C. Wahl, J. Chem. Phys. 41, 2600 (1964) .CrossRefGoogle Scholar
  6. 6.
    J. Frenkel, Wave Mechanics, Advanced General Theory, Clarendon Press, Oxford (1934).Google Scholar
  7. 7.
    C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).CrossRefGoogle Scholar
  8. 8.
    H. P. Kelly, Adv. Chem. Phys. 14, 129 (1969).CrossRefGoogle Scholar
  9. 9.
    R. K. Nesbet, Adv. Chem. Phys. 9, (1965); 14, 7 (1969).Google Scholar
  10. 10.
    O. Sinanoglu, Adv. Chem. Phys. 14, 237 (1969).CrossRefGoogle Scholar
  11. 11.
    H. J. Silverstone and O. Sinanoǧlu, J. Chem. Phys. 44, 1899 (1966).CrossRefGoogle Scholar
  12. 12.
    T. Shibuya and V. McKoy, Phys. Rev. A 2, 2208 (1970).CrossRefGoogle Scholar
  13. 13.
    B. S. Yarlagadda, H. S. Taylor, R. Yaris, and B. Schneider, Chem. Phys. Lett. 22, 381 (1973).CrossRefGoogle Scholar
  14. 14.
    I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, J. Comput. Phys. 11, 90 (1973).CrossRefGoogle Scholar
  15. 15.
    J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).CrossRefGoogle Scholar
  16. 16.
    P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).CrossRefGoogle Scholar
  17. 17.
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
  18. 18.
    C. C. J. Roothaan and P. S. Bagus, Methods Comput. Phys. 2, 47 (1963).Google Scholar
  19. 19.
    G. Das, J. Chem. Phys. 58, 5104 (1973).CrossRefGoogle Scholar
  20. 20.
    G. Das, T. Janis, and A. C. Wahl, J. Chem. Phys. 61, 1274 (1974).CrossRefGoogle Scholar
  21. 21.
    J. Hinze, J. Chem. Phys. 59, 6424 (1973).CrossRefGoogle Scholar
  22. 22.
    B. Levy and G. Berthier, Int. J. Quantum Chem. 2, 307 (1968);CrossRefGoogle Scholar
  23. 22a.
    B. Levy and G. Berthier, Int. J. Quantum Chem. 3, 247 (1969).CrossRefGoogle Scholar
  24. 23.
    R. C. Rafenetti and K. Ruedenberg, Int. J. Quantum Chem. 34, 625 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Arnold C. Wahl
    • 1
  • G. Das
    • 1
  1. 1.Chemistry DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations