Protein Kinase C and Regulation of the Na+−H+ Antiporter Activity During Fertilization of the Sea Urchin Egg

  • Sheldon S. Shen


The sea urchin egg is poised to initiate or accelerate a number of metabolic activities, which are quite different in kind. These changes in activities during fertilization have been causally linked to changes in intracellular ion activities (Whitaker and Steinhardt 1985), in particular, the transient increase in internal Ca2+ activity (Steinhardt and Epel 1974; Chambers et al. 1974; Steinhardt et al. 1977) and the rise in cytoplasmic pH (Epel et al. 1974; Johnson et al. 1976; Shen and Steinhardt 1978). The importance of these ionic changes is readily evident by their dramatic effects when imposed on eggs. Successful embryogenesis has been reported with parthenogenetic activation of sea urchin eggs with agents that raise internal Ca2+ activity and cytoplasmic pH (Brandriff et al. 1975). The activating capabilities of these parthenogenetic treatments are well documented for a wide variety of marine invertebrates (Shen 1983). A reason for continuing interests in the dual ionic signal associated with fertilization is the observations of similar dual ionic signal being a characteristic of many mitogenic stimulation of mammalian cells in culture (Hesketh et al. 1985, 1988; Moolenaar et al. 1986). There are many observations suggesting intracellular Ca+2 transient acts as a primary trigger for cell growth (Whitfield et al. 1980; Campbell 1983; Hesketh et al. 1985). More recently, increase in intracellular pH through activation of Na+−H+ antiporter during growth stimulation has been demonstrated (Moolenaar et al. 1986; Soltoff and Cantley 1988).


Acid Release Calmodulin Antagonist Germinal Vesicle Breakdown Fertilization Envelope Cortical Granule Exocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberdam, E. and N. Dekel. 1985. Activators of protein kinase C stimulate meiotic maturation of rat oocytes. Biochem. Biophys. Res. Commun. 132: 570–574.PubMedCrossRefGoogle Scholar
  2. Ammann, D., F. Lanter, R. A. Steiner, P. Schulthess, Y. Shijo, and W. Simon. 1981. Neutral carrier based hydrogen selective microelectrodes for extra-and intracellular studies. Anal. Chem. 53: 2267–2269.PubMedCrossRefGoogle Scholar
  3. Berk, B. C., M. S. Aronow, T. A. Brock, E. Cragoe, Jr., M. A. Gimbrone, Jr., and R. W. Alexander. 1987. Angiotensin II-stimulated Na’/H’ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C-dependent and independent pathways. J. Biol. Chem. 262: 5057–5064.PubMedGoogle Scholar
  4. Berridge, M. J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–193.PubMedCrossRefGoogle Scholar
  5. Berridge, M. J. and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312: 315–321.CrossRefGoogle Scholar
  6. Besterman, J. M., S. P. Watson, and P. Cuatrecasas. 1986. Lack of association of epidermal growth factor-, insulin-, and serum-induced mitogenesis with stimulation of phosphoinositide degradation in BALB/c 3T3 fibroblasts. J. Biol. Chem. 261: 723–727.PubMedGoogle Scholar
  7. Blenis, J.,J. G. Spivack, and R. L. Erikson. 1984. Phorbol esters, serum, and Rous sarcoma virus transforming gene product induce similar phosphorylations of ribosomal protein S6. Proc. Natl. Acad. Sci. USA. 81:6408–6412.Google Scholar
  8. Blumberg, P. M., K. B. Delclos, and S. Jaken. 1981. Tissues and species specificity for phorbol ester receptors. p. 201–227. In: Organ and Species Specificity in Chemical Carcinogenesis. R. Langenbach, S. Nesnow and J. M. Rice (Eds.). Plenum Press, New York.Google Scholar
  9. Boni, L. T. and R. R. Rando. 1985. The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J. Biol. Chem. 260: 10819–10825.PubMedGoogle Scholar
  10. Bornslaeger, E. A., W. T. Poueymirou, P. Mattei, and R. M. Schultz. 1986. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emmission of mouse oocytes. Exp. Cell Res. 165: 507–517.PubMedCrossRefGoogle Scholar
  11. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.PubMedCrossRefGoogle Scholar
  12. Brandriff, B., R. T. Hinegardner, and R. A. Steinhardt. 1975. Development and life cycle of the parthenogenetically activated sea urchin embryo. J. Exp. Zool. 192: 13–24.PubMedCrossRefGoogle Scholar
  13. Campbell, A. K. 1983. Intracellular Calcium. Its Universal Roles as Regulator. J. Wiley and Sons Ltd., New York.Google Scholar
  14. Carroll, A. G. and W. R. Eckberg. 1986. Inhibition of germinal vesicle breakdown and activation of cytoplasmic contractility in Spisula oocytes by calmodulin antagonists. Biol. Bull. 170: 43–50.CrossRefGoogle Scholar
  15. Chambard, J. C., S. Paris, G. L’Allemain, and J. Pouyssegur. 1987 Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature (Lond.) 326: 800–803.CrossRefGoogle Scholar
  16. Chambers, E. L., B. C. Pressman, and B. Rose. 1974. The activation of sea urchin eggs by the divalent ionophores A23187 and X-537A. Biochem. Biophys. Res. Commun. 60: 126–132.PubMedCrossRefGoogle Scholar
  17. Ciapa, B. and M. Whitaker. 1986. Two phases of inositol polyphosphate and diacylglycerol production at fertilisation. FEBS Lett. 195: 347–351.PubMedCrossRefGoogle Scholar
  18. Cope, F.O., B. D. Howard, and R. K. Boutwell. 4986. The in vitro characterization of the inhibition of mouse brain protein kinase-C by retinoids and their receptors. Experentia 42: 1023–1027.Google Scholar
  19. Dorée, M., A. Picard, J. C. Cavadore, C. Le Peuch, and J. G. Demaille. 1982. Calmodulin antagonists and hormonal control of meiosis in starfish oocytes. Exp. Cell Res. 139: 135144.Google Scholar
  20. Dubé, F. 1988. The relationships between early ionic events, the pattern of protein synthesis, and oocyte activation in the surf clam, Spisula solidissima. Dev. Biol. 126: 233–241.CrossRefGoogle Scholar
  21. Dubé, F., R. Golsteyn, and L. Dufresne. 1987. Protein kinase C and meiotic maturation of surf clam oocytes. Biochem. Biophys. Res. Commun. 142: 1072–1076.PubMedCrossRefGoogle Scholar
  22. Eckberg, W. R. and A. G. Carroll. 1987. Evidence for involvement of protein kinase C in germinal vesicle breakdown in Chaetopterus. Dev. Growth and Differ. 29: 489–496.CrossRefGoogle Scholar
  23. Eckberg, W. R., E. Z. Szuts, and A. G. Carroll. 1987. Protein kinase C activity, protein phos- phorylation and germinal vesicle breakdown in Spisula oocytes. Dev. Biol. 124: 57–64.PubMedCrossRefGoogle Scholar
  24. Epel, D., R. Steinhardt, T. Humphreys, and D. Mazia. 1974. An analysis of the partial derepression of sea urchin eggs by ammonia; the existence of independent pathways. Dev. Biol. 40: 245–255.PubMedCrossRefGoogle Scholar
  25. Epel, D., C. Patton, R. W. Wallace, and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs. An early event of fertilization. Cell 23: 543–549.PubMedCrossRefGoogle Scholar
  26. Grainger, J. L., M. M. Winkler, S. S. Shen, and R. A. Steinhardt. 1979. Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. Dev. Biol. 68: 396406.Google Scholar
  27. Grinstein, S. and W. Furuya. 1988. Receptor-mediated activation of electropermeabilized neutrophile. Evidence for a Cat+- and protein kinase C-independent signalling pathway. J. Biol. Chem. 263: 1779–1783.PubMedGoogle Scholar
  28. Hesketh, T. R., J. P. Moore, J. D. H. Morris, M. V. Taylor, J. Rogers, G. A. Smith, and J. C. Metcalfe. 1985. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature (Land.) 313: 481–484.CrossRefGoogle Scholar
  29. Hesketh, T. R., J. D. Morris, J. P. Moore, and J. C. Metcalfe. 1988. Cat+ and pH responses to sequential additions of mitogens in single 3T3 fibroblasts: correlations with DNA synthesis. J. Biol. Chem. 263: 11879–11886.PubMedGoogle Scholar
  30. Hidaka, H., T. Yamaki, T. Totsuka, and M. Asano. 1979. Selective inhibitors of Ca’-binding modulators of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol. Pharmacol. 15: 49–59.PubMedGoogle Scholar
  31. Hidaka, H., M. Asano, and T. Tanaka. 1981. Activity-structure relationship of calmodulin antagonists. Mol. Pharmacol. 20: 571–578.PubMedGoogle Scholar
  32. Hidaka, H., M. Inagaki, S. Kawamoto, and Y. Sasaki. 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23: 5036–5041.PubMedCrossRefGoogle Scholar
  33. Holloway, P. W. 1973. A simple procedure for removal of Triton X-100 from protein samples. Anal. Biochem. 53: 304–308.PubMedCrossRefGoogle Scholar
  34. Huang, C. L., M. G. Cogan, E. J. Cragoe, Jr., and H. E. Ives. 1987. Thrombin activates Na+/H+ exchanger in vascular smooth muscle cells. Evidence for a kinase C-independent pathway which is Cat+- dependent and pertussis toxin-sensitive. J. Biol. Chem. 262: 14134–14140.PubMedGoogle Scholar
  35. Hunter, T. and J. A. Cooper. 1985. Protein-tyrosine kinases. Annu. Rev. Biochem. 54:897–930. Ingebritsen, T. S. and P. Cohen. 1983. Protein phosphatases: Properties and role in cellular regulation. Science 221: 331–338.Google Scholar
  36. Johnson, J. D., D. Epel, and M. Paul. 1976 Intracellular pH and activation of sea urchin eggs after fertilisation. Nature (Lond.) 262: 661–664.CrossRefGoogle Scholar
  37. Kaibuchi, K., Y. Takai, and Y. Nishizuka. 1981. Cooperative roles of various membrane phospholipide in the activation of calcium-activated, phospholipid-dependent protein kinase. J. Biol. Chem. 256: 7146–7149.PubMedGoogle Scholar
  38. Kase, H., K. Iwahashi, and Y. Matsuda. 1986. K-252a, potent inhibitor of protein kinase C from microbial origin. J. Antibiot. (Tokyo) 39: 1059–1965.CrossRefGoogle Scholar
  39. Kase, H., K. Iwahashi, S. Nakanishi, Y. Matsuda, K. Wamada, M. Takahashi, C. Murakata, A. Sato, and M. Kaneko. 1987. K252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun. 142: 436–440.PubMedCrossRefGoogle Scholar
  40. Kawamoto, S. and H. Hidaka. 1984. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platlets. Biochem. Biophys. Res. Commun. 125: 258–264.Google Scholar
  41. Kikkawa, U. and Y. Nishizuka. 1986. The role of protein kinase C in transmembrane signalling. Annu. Rev. Cell Biol. 2: 149–178.PubMedCrossRefGoogle Scholar
  42. Kikkawa, U., M. Go, J. Koumoto, and Y. Nishizuka. 1986. Rapid purification of protein kinase C by high performance liquid chromatography. Biochem. Biophys. Res. Commun. 135: 636–643.PubMedCrossRefGoogle Scholar
  43. Kishimoto, A., Y. Takai, T. Mori, U. Kikkawa, and Y. Nishizuka. 1980. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255: 2273–2276.PubMedGoogle Scholar
  44. Kishimoto, T., M. Yoshikuni, H. Ikadai, and H. Kanatani. 1985. Inhibition of starfish oocyte maturation by tumor-promoting phorbol esters. Dev. Growth and Differ. 27: 233–242.CrossRefGoogle Scholar
  45. Komukai, M., A. Fujiwara, Y. Fujino, and I. Yasumasu. 1985. The effects of several ion channel blockers and calmodulin antagonists on fertilization-induced acid release and 45Ca2+ uptake in sea urchin eggs. Exp. Cell Res. 159: 463–472.PubMedCrossRefGoogle Scholar
  46. Kuo, J. F., R. G. G. Anderson, B. C. Wise, L. Mackerlova, I. Salomonsson, N. L. Brackett, N. Katoh, M. Shoji, and R. W. Wrenn. 1980. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc. Natl. Acad. Sci. USA. 77: 7039–7043.PubMedCrossRefGoogle Scholar
  47. L’Allemain, G. and J. Pouysségur. 1986. EGF and insulin action in fibroblasts. Evidence that phosphoinsitide hydrolysis is not an essential mitogenic signalling pathway. FEBS Leu. 197: 344–348.CrossRefGoogle Scholar
  48. Lau, A. F., T. C. Rayon, and T. Humphreys. 1986. Tumor promoters and diacylglycerol activate the Na+/H+ antiporter of sea urchin eggs. Exp. Cell Res. 166: 23–30.PubMedCrossRefGoogle Scholar
  49. Laurent, A., M. Basset, M. Dorée, and C. J. Le Peuch. 1988. Involvement of a calciumphospholipid-dependent protein kinase in the maturation of Xenopus laevis oocytes. FEES Lett. 226: 324–330.CrossRefGoogle Scholar
  50. Letterio, J. J.,S. R. Coughlin, and L. T. Williams. 1986. Pertussis toxin-sensitive pathway in the stimulation of c-myc expression and DNA synthesis by bombesin. Science 234:11171119.Google Scholar
  51. Loomis, C. R. and R. M. Bell. 1988. Sangivamycin, a nucleoside analogue, is a potent inhibitor of protein kinase C. J. Biol. Chem. 263: 1682–1692.PubMedGoogle Scholar
  52. Mazzei, G. J., R. C. Schatzman, S. Turner, W. R. Vogler, and J. F. Kuo. 1984. Phospholipidsensitive Ca-dependent protein kinase inhibition by R-24571, a calmodulin antagonist. Biochem. Pharmacol. 33: 125–130.Google Scholar
  53. McDonald, J. R., U. Gröschel-Stewart, and M. P. Walsh. 1987. Properties and distribution of the protein inhibitor (M. 17000) of protein kinase C. Biochem. J. 242: 695–705.PubMedGoogle Scholar
  54. Mitsuhashi, T. and H. E. Ives. 1988. Intracellular Ca’ requirement for activation of the N’a+/H+ exchanger in vascular smooth muscle cells. J. Biol. Chem. 263: 8790–8795.PubMedGoogle Scholar
  55. Moolenaar, W. H., L. H. K. Defize, P. T. Van Deer Saag, and S. W. De Laat. 1986. The generation of ionic signals by growth factors. Curr. Top. ttlembr. Transp. 26: 137–156.CrossRefGoogle Scholar
  56. Morin, M. J., D. Kreutter, H. Rasmussen, and A. C. Sartorelli. 1987. Disparate effects of activators of protein kinase C on HL-60 promyelocytic leukemia cell differentiation. J. Biol. Chem. 262: 11758–11763.PubMedGoogle Scholar
  57. Muldoon, L. L., G. A. Jamieson, Jr., A. C. Kao, H. C. Palfrey, and M. L. Villereal. 1987. Mitogen stimulation of Na`-H+ exchange: differential involvement of protein kinase C. Am. J. Physiol. 253: C219 - C229.Google Scholar
  58. Nakanishi, S., K. Yamada, H. Kase, S. Nakamura, and Y. Nonumura. 1988. K- 252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase. J. Biol. Chem. 263: 6215–6219.PubMedGoogle Scholar
  59. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (Load.) 308: 693–698.CrossRefGoogle Scholar
  60. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C. Science 233:305–312. Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature (Loud.) 334: 661–665.CrossRefGoogle Scholar
  61. Ober, S. S. and A. B. Pardee. 1987. Both protein kinase C and calcium mediate activation of the Na+/H+ antiporter in Chinese hamster embryo fibroblasts. J. Cell. Physiol. 132: 311317.Google Scholar
  62. Orme, F. W. 1969. Liquid ion-exchanger microelectrodes. p.376–403. In: Glass Micro-electrodes. M. Lavallee, O. F. Schanne, and N. C. Hebert (Eds.). John Wiley and Sons, New York.Google Scholar
  63. Owen, N. E. and M. L. Villereal. 1982. Evidence for a role of calmodulin in serum stimulation of Na.’ influx in human fibroblasts. Proc. Natl. Acad. Sci. USA. 79: 3537–3541.PubMedCrossRefGoogle Scholar
  64. Picard, A. and M. Dorée. 1982. Intracellular microinjection of anticalmodulin drugs does not inhibit the cortical reaction induced by fertilization, ionophore A23187 or injection of calcium buffers in sea urchin eggs. Del,. Growth and Differ. 24: 155–162.CrossRefGoogle Scholar
  65. Poenie, M., J. Alderton, R. Y. Tsien, and R. A. Steinhardt. 1985. Changes of free calcium levels with stages of the cell division cycle. Nature (Loud.) 315: 147–149.CrossRefGoogle Scholar
  66. Raben, D. M. and D. D. Cunningham. 1985. Effects of EGF and thrombin on inositolcontaining phospholipide of cultured fibroblasts: stimulation of phosphatidylinositol synthesis by thrombin but not EGF. J. Cell. Physiol. 125: 582–590.PubMedCrossRefGoogle Scholar
  67. Ramsdell, J. S., G. R. Pettit, and A. H. Tashjian, Jr. 1986. Three activators of protein kinase C, bryostatins, dioleins, and phorbol esters, show differing specificities of action on GH, pituitary cells. J. Biol. Chem. 261: 17073–17080.PubMedGoogle Scholar
  68. Rosenthal, A., L. Rhee, R. Yadegari, R. Paro, A. Ullrich, and D. V. Goeddel. 1987. Structure and nucleotide sequence of a Drosophila melanogaster protein kinase C gene. EMBO J. 6: 433–441.PubMedGoogle Scholar
  69. Rosoff, P. M. and G. Terres. 1986. Cyclosporine A inhibits Ca2+-dependent stimulation of the Na+/H+ antiport in human T cells. J. Cell Biol. 103: 457–463.PubMedCrossRefGoogle Scholar
  70. Rozengurt, E. 1986. Early signals in the mitogenic response. Science 234: 161–166.PubMedCrossRefGoogle Scholar
  71. Sano, K. 1982. Inhibition of the acrosome reaction of sea urchin spermatozoa by a calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). J. Exp. Zool. 226: 471–473.CrossRefGoogle Scholar
  72. Schatzman, R. C., R. L. Raynor, and J. F. Kuo. 1983. N-(6-aminohexyl)-5-chloro-lnaphthalenesulfonamide (W-7), a calmodulin antagonist, also inhibits phospholipidsensitive calcium-dependent protein kinase. Biochim. Biophys. Acta 755: 144–147.PubMedCrossRefGoogle Scholar
  73. Sekar, M. C. and L. E. Hokin. 1986. The role of phosphoinositides in signal transduction. J. Membr. Biol. 89: 193–210.PubMedCrossRefGoogle Scholar
  74. Shen, S. S. 1982. The effects of external ions on pH, in sea urchin eggs. p.269–282. In: Intracellular pH: Its Measurement. Regulation and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer (Eds.). Alan R. Liss, New York.Google Scholar
  75. Shen, S. S. 1983. Membrane properties and intracellular ion activities of marine invertebrate eggs and their changes during activation. p. 213–267. In: Mechanism and Control of Animal Fertilization. J. F. Hartmann (Ed.). Academic Press, New York.Google Scholar
  76. Shen, S. S. and L. J. Burgart. 1986. 1,2-Diacylglycerols mimic phorbol 12-myristate 13-acetate activation of the sea urchin egg. J. Cell. Physiol. 127: 330–340.Google Scholar
  77. Shen, S. S. and L. A. Ricke. 1989. Protein kinase C from sea urchin eggs. Comp. Biochem. Physiol. (in press).Google Scholar
  78. Shen, S. S. and R. A. Steinhardt. 1978. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature (Lond.) 272: 253–254.CrossRefGoogle Scholar
  79. Shen, S. S. and R. A. Steinhardt. 1979. Intracellular pH and the sodium requirement at fertilisation. Nature (Lond.) 282: 87–89.CrossRefGoogle Scholar
  80. Slack, B. E., J. E. Bell, and D. J. Benos. 1986. Inositol-1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am. J. Physiol. 250: C340 - C347.PubMedGoogle Scholar
  81. Smith, R. J., J. M. Justen, and L. M. Sam. 1988. Effects of protein kinase C inhibitor, K252a, on human polymorphonuclear neutrophil responsiveness. Biochem. Biophys. Res. Commun. 152: 1497–1503.PubMedCrossRefGoogle Scholar
  82. Soltoff, S. P. and L. C. Cantley. 1988. Mitogens and ion fluxes. Annu. Rev. Physiol. 50: 207223.Google Scholar
  83. Stapleton, C. L., L. L. Mills, and D. E. Chandler. 1985. Cortical granule exocytosis in sea urchin eggs is inhibited by drugs that alter intracellular calcium stores. J. Exp. Zool. 234: 289–299.PubMedCrossRefGoogle Scholar
  84. Steinhardt, R. A. and J. M. Alderton. 1982. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature (Lond.) 295: 154–155.CrossRefGoogle Scholar
  85. Steinhardt, R. A. and D. Epel. 1974. Activation of sea-urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. USA 71:1915–1919.Google Scholar
  86. Steinhardt, R. A., R. S. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–196.PubMedCrossRefGoogle Scholar
  87. Steinhardt, R. A., S. S. Shen, and R. S. Zucker. 1978. Direct evidence for ionic messengers in the two phases of metabolic derepression at fertilization in the sea urchin egg. ICN-UCLA Symp. Mol. Cell. Bio. 12:415–424.Google Scholar
  88. Stith, B. and J. L. Mailer. 1987. Induction of meiotic maturation in Xenopus oocytes by 120-tetradecanoylphorbol 13-acetate. Exp. Cell Res. 169:514–523.Google Scholar
  89. Swann, K. and M. Whitaker. 1985. Stimulation of the Na’/H` exchanger of sea urchin eggs by phorbol ester. Nature (Load.) 314: 274–277.CrossRefGoogle Scholar
  90. Tanaka, T., T. Ohmura, T. Yamakado, and H. Hidaka. 1982. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Mol. Pharmacol. 22: 408412.Google Scholar
  91. Turner, P. R., M. P. Sheetz, and L. A. Jaffe. 1984. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature (Lond.) 310: 414–415.CrossRefGoogle Scholar
  92. Turner, P. R., L. A. Jaffe, and A. Fein. 1986. Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J. Cell Biol. 102: 7076.CrossRefGoogle Scholar
  93. Turner, P. R., L. A. Jaffe, and P. Primakoff. 1987. A cholera toxin-sensitive G-protein stimulates exocytosis in sea urchin eggs. Dev. Biol. 120: 577–583.PubMedCrossRefGoogle Scholar
  94. Uchida, T. and C. R. Filburn. 1984. Affinity chromatography of protein kinase C-phorbol ester receptor on polyacrylamide-immobilized phosphatidylserine. J. Biol. Chem. 259: 12311–12314.PubMedGoogle Scholar
  95. Urner, F. and S. Schorderet-Slatkine. 1984. Inhibition of denuded mouse oocyte meiotic maturation by tumor-promoting phorbol esters and its reversal by retinoids. Exp. Cell Res. 154:600–605.Google Scholar
  96. Vaartjes, W. J., C. G. M. de Haas, and S. G. van den Bergh. 1986. Phorbol esters, but not epidermal growth factor or insulin, rapidly decrease soluble protein kinase C activity in rat hepatocytes. Biochem. Biophys. Res. Commun. 138: 1328–1333.PubMedCrossRefGoogle Scholar
  97. Vacquier, V. D. 1975. The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Dev. Biol. 43: 62–74.PubMedCrossRefGoogle Scholar
  98. Van Belle, H. 1981. R24571: A potent inhibitor of calmodulin activated enzymes. Cell Calcium 2:483–494.Google Scholar
  99. Vara, F. and E. Rozengurt. 1985. Stimulation of Na’-H’ antiport activity by epidermal growth factor and insulin occurs without activation of protein kinase C. Biochem. Biophys. Res. Commun. 130:646–653.Google Scholar
  100. Whitaker, M. and M. Aitchison. 1983. Calcium-dependent polyphosphoinositide hydrolysis is associated with exocytosis in vitro. FEBS Lett. 182: 119–124.CrossRefGoogle Scholar
  101. Whitaker, M. and P. F. Baker. 1983. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effect of some inhibitors of cytoskeletal function. Proc. Roy. Soc. Lond. B Biol. Sci. 218: 397–413.CrossRefGoogle Scholar
  102. Whitaker, M. and R. F. Irvine. 1984. Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature (Load.) 312: 636–639.CrossRefGoogle Scholar
  103. Whitaker, M. and R. A. Steinhardt. 1985. Ionic signaling in the sea urchin egg at fertiliation. p. 167–221. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.) Academic Press, New York.Google Scholar
  104. Whitfield, J. F., A. L. Boynton, J. P. MacManus, R. H. Rixon, M. Sikorska, B. Tsang, and P. R. Walker. 1980. The roles of calcium and cyclic AMP in cell proliferation. Annu. NY Acad. Sci. 339: 216–240.CrossRefGoogle Scholar
  105. Wolf, M., H. Le Vine, III, W. Stratford May, Jr., P. Cuatrecasas, and N. Sahyoun. 1985. A model for intracellular translocation of protein kinase C involving synergism between Cat and phorbol esters. Nature (Lond.) 317: 546–549.CrossRefGoogle Scholar
  106. Woodgett, J. R. and T. Hunter. 1987. Isolation and characterization of two distinct forms of protein kinase C. J. Biol. Chem. 262: 4836–4843.PubMedGoogle Scholar
  107. Wright, C. D. and M. D. Hoffman. 1986. The protein kinase C inhibitors H-7 and H-9 fail to inhibit human neutrophil activation. Biochem. Biophys. Res. Commun. 135: 749–755.PubMedCrossRefGoogle Scholar
  108. Zachary, I., P. J. Woll and E. Rozengurt. 1987. A role for neuropeptides in the control of cell proliferation. Del,. Biol. 124: 295–308.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Sheldon S. Shen
    • 1
  1. 1.Department of ZoologyIowa State UniversityAmesUSA

Personalised recommendations