What Happens During the Latent Period at Fertilization

  • Michael Whitaker
  • Karl Swann
  • Ian Crossley


A period of several seconds to half a minute can elapse between the initial interaction of the fertilizing sperm with the egg and the initiation of the calcium wave that causes global egg activation. It has been called the latent period. We discuss experiments that have shed light on what is happening during the latent period. We suggest that the latent period reflects the transfer of an activating messenger from the sperm to the egg through a labile fusion pore. The latent period ends when the messenger triggers the increase in cytoplasmic calcium that consolidates the labile fusion state and then sweeps across the egg, activating it.


Latent Period Uranyl Nitrate Calcium Wave Inositol Trisphosphate Fusion Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. D. and J. L. Griffin. 1958. The time sequence of early events in the fertilisation of sea urchin eggs. 1. The latent period and the cortical reaction. Exp. Cell Res. 15: 163–173.PubMedCrossRefGoogle Scholar
  2. Baker, P. F. and R. Presley. 1969. Kinetic evidence for an intermediate stage in the fertilization of the sea urchin egg. Nature (Land.) 221: 488–490.CrossRefGoogle Scholar
  3. Berridge, M. J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–163.PubMedCrossRefGoogle Scholar
  4. Berridge, M. J. and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in signal transduction. Nature (Load.) 312: 315–318.CrossRefGoogle Scholar
  5. Blinks, J. R., F. G. Prendergast, and D. G. Allen. 1976. Photo-proteins as biological calcium indicators. Pharmacol. Rev. 28: 1–93.PubMedGoogle Scholar
  6. Brandriff, B, R. I. Hinegardner, and R. A. Steinhardt. 1975. Development and lifecycle of the parthenogenetically activated sea urchin embryo. J. Exp. Zool. 192: 13–24.PubMedCrossRefGoogle Scholar
  7. Busa, W. B. and R. Nuccitelli. 1985. An elevated cytosolic calcium wave follows fertilization in the eggs of the frog Xenopus laevis. J. Cell Biol. 100: 1325–1329.CrossRefGoogle Scholar
  8. Byrd, W. and G. Perry. 1980. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp. Cell Res. 126: 333–342.PubMedCrossRefGoogle Scholar
  9. Calvin, W. H. 1975. Generation of spike trains in CNS neurones. Brain Res. 84: 1–22.PubMedCrossRefGoogle Scholar
  10. Chambers, E. L. and J. de Armendi. 1979. Membrane potential, action potential and activation potential of the eggs of the sea urchin Lytechinus variegatus. Exp. Cell Res. 122: 203–218.CrossRefGoogle Scholar
  11. Ciapa, B. and M. J. Whitaker. 1986. Two phases of inositol polyphosphate and diacylglycelol production at fertiliation. FEBS Lett. 195: 137–140.CrossRefGoogle Scholar
  12. Clapper, D. L., T. F. Walseth, P. J. Dargie, and H.-C. Lee. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.PubMedGoogle Scholar
  13. Cline C. A., H. Schatten, R. Balczon, and G. Schatten. 1983. Actin-mediated surface motility during sea urchin fertilization. Cell Motil. 3: 513–524.PubMedCrossRefGoogle Scholar
  14. Cockcroft, S. and B. D. Gomperts. 1985. Role of guanine nucleotides in the activation of phosphoinositide phospho-diesterase. Nature (Lond.) 314: 534–536.CrossRefGoogle Scholar
  15. Cole, K. S. and H. J. Curtis. 1938. Transverse electrical impedance of the squid giant axon. J. Gen. Phvsiol. 22: 757–765.Google Scholar
  16. Crank, J. 1975. The Mathematics of Diffusion. Oxford University Press, London.Google Scholar
  17. Dale, B., L. J. DeFelice, and V. Taglietti. 1978. Membrane noise and conductance increase during single spermatozoon-egg interactions. Nature (Load.) 275: 217–219.CrossRefGoogle Scholar
  18. Dale, B, L. J. DeFelice, and G. Ehrenstein. 1985. Injection of a soluble sperm fraction into sea-urchin eggs triggers the cortical reaction. Experientia 41: 1068–1070.PubMedCrossRefGoogle Scholar
  19. David, C., J. Halliwell, and M. J. Whitaker. 1988. Some properties of the membrane currents underlying the fertilization potential in sea urchin eggs. J. Physiol. (Lond.) 402: 139–154.Google Scholar
  20. Eisen, A., D. P. Kiehart, S. J. Wieland, and G. T. Reynolds. 1984. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J. Cell Biol. 99: 1647–1654.PubMedCrossRefGoogle Scholar
  21. Epel, D. and C. Patton. 1985. Cortical granules of sea urchin eggs do not undergo exocytosis at the site of sperm-egg fusion. Dev. Growth and Differ. 27: 361–369.CrossRefGoogle Scholar
  22. Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds. 1978. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol. 76: 448–466.CrossRefGoogle Scholar
  23. Hamaguchi, Y. and I. Mabuchi. 1988. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization. Cell Motil. Cytoskeleton. 9: 153–163.Google Scholar
  24. Hinckley, R. E., B. D. Wright, and J. W. Lynn. 1986. Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev. Biol. 118: 148–154.CrossRefGoogle Scholar
  25. Hulser, D. and G. Schatten. 1982. Bioelectric responses at fertilization: separation of the events associated with insemination from those due the the cortical reaction in the sea urchin Lytechinus variegatus. Gamete Res. 5: 363–377.CrossRefGoogle Scholar
  26. Jaffe, L. A. 1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature (Lond.) 261: 68–71.CrossRefGoogle Scholar
  27. Jaffe, L. F. 1980. Calcium explosions as triggers of development. Annu. NY Acad. Sci. 339: 86–101.CrossRefGoogle Scholar
  28. Jaffe, L. F. 1983. Sources of calcium in egg activation: a review and hypothesis. Dev. Biol. 99: 256–276.CrossRefGoogle Scholar
  29. Kopf, G. S., D. J. Tubb, and D. L. Garbers. 1979. Activation of sperm respiration by a low molecular weight egg factor and by 8-bromoguanosine 3-,5’-monophosphate. J. Biol. Chem. 254: 8554–8560.PubMedGoogle Scholar
  30. Kubota, H. Y., Y. Yoshimoto, Y. Yoneda, and Y. Hiramoto. 1987. Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119: 126–136.CrossRefGoogle Scholar
  31. Longo, F. J. 1978. Effects of cytochalasin B on sperm-egg interactions. Der. Biol. 67: 249–265.Google Scholar
  32. Longo, F. J., J. W. Lynn, D.H. McCulloh, and E. L. Chambers. 1986. Correlative ultrastructural and electrophysiological studies of sperm-egg interactions of the seaurchin, Lytechnus variegatus. Dev. Biol. 118: 155–166.CrossRefGoogle Scholar
  33. Lynn, J. W. and E. L. Chambers. 1984. Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on sperm entry, activation and development. Dev. Biol. DD 102: 98–109.PubMedCrossRefGoogle Scholar
  34. Lynn, J. W., D. H. McCulloh, and E. L. Chambers. 1988. Voltage clamp studies of fertilization in sea urchin eggs. II. Current patterns in relation to sperm entry, nonentry and activation. Dev. Biol. 128: 305–323.PubMedCrossRefGoogle Scholar
  35. Mannhertz, H. G. 1968. ATP-Spaltung and ATP-Diffusion in oscillierenden extrahiertenMuskelfasern. Pfluegers Arch. Gesamte Physiol. 303: 230–248.CrossRefGoogle Scholar
  36. McCulloh, D. H. and E. L. Chambers. 1986. When does the sperm fuse with the egg? J. Gen. Physiol. 88: 38–39a.Google Scholar
  37. McCulloh, D. H., J. W. Lynn, and E. L. Chambers. 1987. Membrane depolarization facilitates sperm entry, large fertilization cone formation and prolonged current responses in sea urchin oocytes. Dev. Biol. 124: 177–190PubMedCrossRefGoogle Scholar
  38. Miyazaki, S., N. Hashimoto, Y. Yoshimoto, T. Kishimoto, Y. Igusa, and Y. Hiramoto. 1986. Temporal and spatial dynamics of the periodic increase in intracellular calcium at fertilization of golden hamster eggs. Dev. Biol. 118: 259–267.PubMedCrossRefGoogle Scholar
  39. Presley, R. and P. F. Baker. 1970. Kinetics of fertilization in the sea urchin: a comparison of methods. J. Exp. Biol. 52: 455–468.Google Scholar
  40. Ridgway, E. B., J. C. Gilkey, and L. F. Jaffe. 1977. Free calcium increases explosively in activating medaka eggs. Proc. Natl. Acad. Sci. USA. 74:623–627.Google Scholar
  41. Rodbell, M. 1980. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature (Lond.) 284: 17–20.CrossRefGoogle Scholar
  42. Shen, S. S. and R. A. Steinhardt. 1984. Time and voltage windows for reversing the electrical block to fertilization. Proc. Nat! Acad. Sci. USA. 81: 1436–1439.PubMedCrossRefGoogle Scholar
  43. Steinhardt, R. A., R. S. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–196.PubMedCrossRefGoogle Scholar
  44. Swann, K. and M. J. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.PubMedCrossRefGoogle Scholar
  45. Swann, K., B. Ciapa, and M. J. Whitaker. 1987. Cell messengers and sea urchin egg activation. p. 45–69. In: Molecular Biology of Invertebrate Development. D. O’Connor (Ed). Alan R. Liss, New York.Google Scholar
  46. Turner, P. R., L. A. Jaffe, and A. Fein. 1986. Regulation of cortical granule exocytosis by inositol 1,4,5-trisphosphate and GTP binding protein. J. Cell Biol. 102: 70–76.PubMedCrossRefGoogle Scholar
  47. Turner, P. R., L. A. Jaffe, and P. Primakoff. 1987. A cholera-toxin sensitive G-protein stimulates exocytosis in sea urchin eggs. Dev. Biol. 120: 577–583.PubMedCrossRefGoogle Scholar
  48. Whitaker, M. J. and R. A. Steinhardt. 1982. Ionic regulation of egg activation. Q. Rev. Biophys. 15: 593–666.PubMedCrossRefGoogle Scholar
  49. Whitaker, M. J. and R. F. Irvine. 1984. Microinjection of inositol torsposphate activates sea urchin eggs. Nature (Lond.) 312: 636–638.CrossRefGoogle Scholar
  50. Whitaker, M. J. and J. Aitchison. 1985. Calcium-dependent phosphoinositide hydrolysis is associated with exocytosis in vitro FEBS Lett. 182: 119–124.CrossRefGoogle Scholar
  51. Williams, D. A., K. E. Fogarty, R. Y. Tsien, and F. S. Fay. 1985. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature (Load.) 318: 558–561.CrossRefGoogle Scholar
  52. Yoshimoto, Y., T. Iwamatsu, K. Hirano, and Y. Hiramoto. 1987. The wave pattern of free calcium released upon fertilization in medaka and sand dollar eggs. Dev. Growth and Differ. 28: 583–596.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael Whitaker
    • 1
  • Karl Swann
    • 1
  • Ian Crossley
    • 1
  1. 1.Department of PhysiologyUniversity College LondonLondonUK

Personalised recommendations