Electrical Capacitance and Membrane Area

  • Raymond T. Kado


Almost 200 years of scientific inquiry were necessary to understand that the electric skate produced its powerful electrical discharge by summing the membrane depolarizations of the cells in each prism in series and having all the prisms in parallel. Cavendishs’ “battery” consisted of 40 Leyden jars, the only means for storing electricity at that time, made of especially thin glass and should have been capable of holding an appreciable charge.


Alternate Current Membrane Conductance Capacitive Current Negative Capacitance Voltage Follower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R., R. T. Kado, and J. Didio. 1962. Impedance measurements in brain tissue of chronic animals using microvolt signals. Exp. Neurol. 5: 47–66.PubMedCrossRefGoogle Scholar
  2. Adrian, R. H. and W. Almers. 1974. Membrane capacity measurements on frog skeletal muscle in media of low ion content. J. Physiol. (Lond.) 237: 573–605.Google Scholar
  3. Charbonneau, M. and D. J. Webb. 1987. Weak bases partially activate Xenopus eggs and permit changes in membrane conductance whilst inhibiting cortical granule exocytosis. J. Cell Science. 87: 205–220.PubMedGoogle Scholar
  4. Clausen, C. and J. M. Fernandez. 1981. A low cost method for rapid transfer function measurement with direct application to biological impedance analysis. Pfluegers Arch. Eur. J. Physiol. 390: 290–295.CrossRefGoogle Scholar
  5. Cole, K. S. 1968. Membranes, ions and impulses. University of California Press, Berkeley. De Felice, L. J. 1981. Introduction to membrane noise. Plenum Press, New York.Google Scholar
  6. Gogelein, H. and W. Van Driessche. 1981. Capacitive and inductive low frequency impedances of Necturus gallbladder epithelium. Pfluegers Arch. Eur. J. Physiol. 389: 105–113.CrossRefGoogle Scholar
  7. Jaffe, L. A., S. Hagiwara, and R. T. Kado. 1978. The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev. Biol. 67: 243–248.PubMedCrossRefGoogle Scholar
  8. Jaffe, L. A. and L. C. Schlichter. 1985. Fertilization-induced ionic conductances in eggs of the frog, Rana pipiens. J. Physiol. 358: 299–319.Google Scholar
  9. Jaffe, L. F. and R. Nuccitelli. 1974. An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63: 614–628.PubMedCrossRefGoogle Scholar
  10. Joshi, C. and J. M. Fernandez. 1988. Capacitance measurements. Biophys. J. 53: 885–892.PubMedCrossRefGoogle Scholar
  11. Kado, R. T. and W. R. Adey. 1965. Method for the measurement of impedance changes in brain tissue. 6th Intl. Conf. on Medical Electronics and Biological Engineering, Tokyo.Google Scholar
  12. Kado, R. T. 1978. The time course of cortical granule fusion in the fertilized and non-fertilized sea urchin egg. Biol. Cell. 32: 141–148.Google Scholar
  13. Kado, R. T., K. Marcher, and R. Ozon. 1981. Electrical membrane properties of the Xenopus laevis oocyte during progesterone-induced meiotic maturation. Dev. Biol. 84: 471–476.PubMedCrossRefGoogle Scholar
  14. Kline, D., L. Simmoncini, G. Mandel, R. Maue, R. T. Kado, and L. A. Jaffe. 1988. Fertilization events induced by neurotransmitters after injection of mRNA in Xenopus eggs. Science 24: 464–467.CrossRefGoogle Scholar
  15. Kolin, A. and R. T. Kado. 1959a. Simple photoelectric demodulator. J. Sci. Instrum. 37: 107.CrossRefGoogle Scholar
  16. Kolin, A. and R. T. Kado. 1959b. Miniaturization of the electromagnetic blood flow meter and its use for the recording of circulatory responses of conscious animals to sensory stimuli. Proc. Natl. Acad. Sci. USA. 45: 1312–1321.PubMedCrossRefGoogle Scholar
  17. McCulloch, D. and E. L. Chambers. 1986. When does the sperm fuse with the egg? Abstr. 40th Annu. Meeting Soc. of Gen. Physiol. 38a.Google Scholar
  18. Moody, W. J. and M. M. Bosma. 1985. Hormone-induced loss of surface membrane during maturation of starfish oocytes: differential effect on potassium and calcium channels. Dev. Biol. 112: 396–404.PubMedCrossRefGoogle Scholar
  19. Miyazaki, M., H. Ohmori, and S. Sasaki. 1975. Potassium rectifications of the starfish oocyte membrane and their changes during oocyte maturation. J. Physiol. (Lond.) 246: 55–78.Google Scholar
  20. Neher, E. and A. Marty. 1982. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci USA. 79: 6712–6716.PubMedCrossRefGoogle Scholar
  21. Niles, W. D., R. A. Levis, and F. S. Cohen. 1985. Planar bilayer membrane made from phospholipid monolayers form by a thinning process. Biophys. J. 53: 327–335.CrossRefGoogle Scholar
  22. Nuccitelli, R. 1980. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dey. Biol. 76: 483–498.CrossRefGoogle Scholar
  23. Peres, A. and G. Bernardini. 1985. The effective membrane capacity of Xenopus eggs: its relations with membrane conductance and cortical granule exocytosis. Pfluegers Arch. Eur. J. Physiol. 404: 266–272.CrossRefGoogle Scholar
  24. Ross, S. M, J. M. Ferrier, and J. Dainty. 1985. Frequency-dependent membrane impedance in Chara coralm estimated by Fourier analysis. J. Membr. Biol. 85: 233–243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Raymond T. Kado
    • 1
  1. 1.Laboratoire de Neurobiologie Cellulaire et MoleculaireCentre National de la Recherche ScientifiqueGif-sur-YVETTEFrance

Personalised recommendations