Skip to main content

Correlations between Time-Dependent and Cytochalasin B Affected Sperm Entry in Voltage-Clamped Sea Urchin Eggs

  • Chapter
Book cover Mechanisms of Egg Activation

Abstract

Sperm entry is only successful in approximately 15% of Lytechinus variegates eggs voltage-clamped at −70 mV, where as 100% of eggs voltage-clamped at −20 mV are penetrated by sperm (Lynn and Chambers 1984). Suppression of sperm penetration at −70 mV is reversible if the clamped egg membrane potential is stepped to −20 mV (a permissive potential for sperm entry). Sperm incorporation occurred in 50% of the eggs when the clamped potential was shifted at approximately 7.5s with an increasing percentage of penetrations as the time period from the sperm-initiated conductance increase to the time of the step was decreased. In the reciprocal experiments where the membrane potential was first clamped at −20 mV and then stepped to −70 mV at specific time points following a sperm-egg interaction, 50% of the eggs were penetrated at an average time of 10.4s with an increasing percentage of sperm incorporation occurring as the time to the step was increased. A similar failure of sperm penetration is induced by treating the sea urchin egg with cytochalasin B (cyto B) (Longo 1978; Schatten and Schatten 1980). Experiments with cyto B-pretreated eggs clamped at −20 mV (an otherwise permissive potential for sperm entry) revealed that not only is sperm entry blocked, but voltage-clamp current profiles associated with the failure of sperm entry at −70 mV were diagnostic of nonpermissive voltage-clamped potentials. In addition, localized FE elevation lifting the sperm from the surface of the egg was frequently observed (an event normally seen only at clamped potentials of −90 and −100 mV). One extended interpretation of these experiments is that microfilament polymerization is interrupted in both the cyto B experiments and in experiments where the egg is clamped at −70 mV and more negative potentials without cyto B treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. D., and J. L. Griffin 1958. The time sequence of early events in the fertilization of sea urchin eggs. II The latent period and the cortical reaction. Exp. Cell Res. 15: 163 - 173.

    Google Scholar 

  • Allemand, D., B. Ciapa, and G. De Renzis. 1987. Effect of cytochalasin B on the developmentof membrane transports in sea urchin eggs after fertilization. Dev. Growth & Differ. 29: 333 - 340.

    Article  CAS  Google Scholar 

  • Blatt, M. R. and C. L. Slayman. 1982. KCl leakage from microelectrodes and its impact on membrane parameters of a non-excitable cell. J. Gen Physiol. 80: 12a.

    Google Scholar 

  • Byrd, W. and G. Perry. 1980. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp. Cell Res. 126: 333 - 342.

    Article  PubMed  CAS  Google Scholar 

  • Cross, N. L. and R. P. Elinson. 1980. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75: 187 - 198.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, E. L. and J. De Armendi. 1979. Membrane potential of eggs of the sea urchin Lytechinus variegatus. Exp. Cell Res. 122: 203 - 218.

    Article  CAS  Google Scholar 

  • David, C., J. Halliwell, and M. Whitaker. 1988. Some properties of the membrane currents underlying the fertilization potential in sea urchin eggs. J. Physiol. (Load.) 402: 139 - 154.

    CAS  Google Scholar 

  • Dale, B. and A. DeSantis. 1981. The effect of cytochalasin B and D on the fertilization of sea urchins. Dev. Biol. 83: 232 - 237.

    Article  PubMed  CAS  Google Scholar 

  • Dale, G.L. 1985. Phosphatidylinositol 4-phosphate kinase is associated with the membrane skeleton in human erythrocytes. Biochem. Biophys. Res. Comm. 133: 189 - 194.

    Article  PubMed  CAS  Google Scholar 

  • Goudeau, H. and M. Goudeau. 1985. Fertilization in Crabs: IV. The fertilization potential consists of a sustained egg membrane hyperpolarization. Gamete Res. 11: 1 - 17.

    Article  Google Scholar 

  • Gould-Somero, M., L. Holland, and M. Paul. 1977. Cytochalasin B inhibits sperm penetration into eggs of Urechis coupe (Echiura). Der. Biol. 58: 11 - 22.

    Google Scholar 

  • Gould-Somero, M., L. A. Jaffe, and L. Z. Holland. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82: 426 - 440.

    Article  CAS  Google Scholar 

  • Grey, R. D., M. J. Bastiani, D. J. Webb, and E. R. Schertel. 1982. An electrical block is required to prevent polyspermy in eggs fertilized by natural mating of Xenopus laevis. Dev. Biol. 89: 475 - 484.

    Article  CAS  Google Scholar 

  • Gundersen, G. G., C. A. Gabel, and B. M. Shapiro. 1982. An intermediate state of fertilization involved in internalization of sperm components. Der. Biol. 93: 59 - 72.

    CAS  Google Scholar 

  • Hagiwara, S. and L. A. Jaffe. 1979. Electrical properties of egg membranes. Annu. Rev. Biophys. Bioeng. 8: 385 - 416.

    Article  PubMed  CAS  Google Scholar 

  • Hinkley, R. E., B. D. Wright, and J. W. Lynn. 1986. Rapid visualization of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev. Biol. 118: 148 - 154.

    Article  PubMed  CAS  Google Scholar 

  • Hulser, D. and G. Schatten. 1982. Bioelectric responses at fertilization: Separation of the events associated with insemination from those due to the cortical reaction in sea urchin, Lytechinus variegatus. Gamete Res. 5: 363 - 377.

    Article  Google Scholar 

  • Jaffe, L. A. 1976. Fast block to polyspermy in sea urchins is electrically mediated. Nature (Lend.) 261: 68 - 71.

    Article  CAS  Google Scholar 

  • Jaffe, L. A. and L. C. Schlichter. 1985. Fertilization induced ionic conductances in egg of the frog, Rana Pipiens. J. Physiol. (Load.) 358299-319.

    Google Scholar 

  • Jaffe, L. A. and M. Gould. 1985. Polyspermy preventing mechanisms. p. 223-92. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.). Academic Press, New York. Kline, D., L. A. Jaffe, and R. P. Tucker. 1985. Fertilization potential and polyspermyprevention in the egg of the nemertean, Cerehratula lacteus. J. Exp. Zool. 236: 45 - 52

    Google Scholar 

  • Lewis, A. S. and N. K. Wills. 1980. Resistive artifacts in liquid ion-exchanger microelectrode estimates of Na activity in epithelial cells. Biophys. J. 31: 127 - 138.

    Article  Google Scholar 

  • Lin, S. and J. A. Spudich. 1974. On the molecular basis of action of cytochalasin B. J. Supranzol. Struct. 2: 728 - 736.

    Article  CAS  Google Scholar 

  • Longo, F. J. 1978. Effects of cytochalasin b on sperm-egg interactions. Dev. Biol. 67:249-265. Longo, F. J. 1980. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: Effects of cytochalasin B. Dev. Biol. 74: 422 - 433.

    Article  Google Scholar 

  • Longo, F. J., J. W. Lynn, D. H. McCulloh, and E. L. Chambers. 1986. Correlative ultrastructural and electrophysiological studies on sperm-egg interactions of the sea urchin, Lytechinus variegatus. Dev. Biol. 118: 155 - 166.

    Article  CAS  Google Scholar 

  • Lynn, J. W. 1985. Time and voltage dependent sperm penetration in sea urchin eggs. Dev. Growth & Differ. 27: 177 - 178.

    Google Scholar 

  • Lynn, J. W. and E. L. Chambers. 1984. Voltage clamp studies of fertilization in sea urchin eggs: I. Effect of clamped membrane potential on sperm entry, activation, and development. Dev. Biol. 102: 98 - 109.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, J. W., D. H. McCulloh, and E. L. Chambers. 1988. Voltage clamp studies of fertilization in sea urchin eggs: II. Current patterns in relation to sperm entry, nonentry and activation. Dev. Biol. 128: 305 - 323.

    Article  PubMed  CAS  Google Scholar 

  • McCulloh, D. H. and E. L. Chambers. 1986. When does the sperm fuse with the egg? J. Gen. Physiol. 88: 38a - 39a.

    Google Scholar 

  • McCulloh, D. H., P. I. Ivonnet and E. L. Chambers. 1988. Actin polymerization precedes fertilization cone formation and sperm entry in the sea urchin egg. Cell Moti!. Cytoskeleton (in press).

    Google Scholar 

  • McCulloh, D. H., C. E. Rexroad, and H. Levitan. 1983. Insemination of rabbit eggs is associated with slow depolarization and repetitive diphasic membrane potentials. Dev. Biol. 95: 372 - 377.

    Article  PubMed  CAS  Google Scholar 

  • Miyasaki, S. and Y. Igusa. 1981. Fertilization potential in golden hamster eggs consists of recurring hyperpolarization. Nature (Loud.) 290: 702 - 704.

    Article  Google Scholar 

  • Nuccitelli, R. 1980. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dev. Biol. 76: 483 - 498.

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli, R. and R. D. Grey. 1984. Controversy over the fast, partial, temporary block to polyspermy in sea urchins - a reevaluation. Dev. Biol. 103: 1 - 17.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild, L. and M. M. Swann. 1952. The fertilization reaction in the sea-urchin. The block to polyspermy. J. Exp. Biol. 29: 469 - 483.

    Google Scholar 

  • Sanger, J. W. and J. M. Sanger. 1975. Polymerization of sperm actin in the presence of cytochalasin-B. J. Exp. Zool. 193: 441 - 447.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, G. 1981. Sperm incorporation, the pronuclear migrations and their relation to the establishment of the first embryonic axis: Time-lapse video microscopy of the movements during fertilization of the sea urchin Lytechinus variegatus. Dev. Biol. 86: 426 - 437.

    Article  CAS  Google Scholar 

  • Schatten, H. and G. Schatten. 1980. Surface activity at the egg plasma membrane during sperm incorporation and its cytochalasin B sensitivity: Scanning electron microscopy and time-lapse video microscopy during fertilization of the sea urchin Lytechinus variegatus. Dev. Biol. 78: 435 - 449.

    Article  CAS  Google Scholar 

  • Schatten, G. and H. Schatten. 1981. Effects of motility inhibitors during sea urchin fertilization. Microfilament inhibitors prevent sperm incorporation and restructuring of fertilized egg cortex, whereas micro tubule inhibitors prevent pronuclear migrations. Exp. Cell Res. 135: 311 - 330.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, G., H. Schatten, I. Specotr, C. Cline, N. Paweletz, C. Simerly, and C. Petzelt. 1986. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice. Exp. Cell Res. 166:191-208

    Google Scholar 

  • Shen, S. and R. A. Steinhardt. 1984. Time and voltage windows for reversing the electrical block to fertilization. Proc. Natl. Acad. Sci. USA 81: 1436 - 1439.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. A. and S. Lin. 1972. Cytochalasin-B, its interaction with actin and actomyosin from muscle. Proc. Natl. Acad. Sci. USA. 69: 442 - 446.

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt, R. A., L. Lundin, and D. Mazia. 1971. Bioelectric responses of the echinoderm egg to fertilization. Proc. Natl. Acad. Sci. USA 68: 2426 - 2430.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, L. G., S. Hatano, H. Ishikawa, and M. S. Mooseker. 1973. The polymerization of actin: Its role in the generation of the acrosomal process of certain echinoderm sperm. J. Cell Biol. 59: 109 - 126.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, L. G. and L. A. Jaffe. 1980. Actin, microvilli, and the fertilization cone of sea urchin eggs. J. Cell Biol. 87: 771 - 782.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P. R., L. A. Jaffe, and A. Fein. 1986. Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J. Cell Biol. 102: 70 - 76.

    Article  PubMed  CAS  Google Scholar 

  • Wade, J. B. 1986. Role of membrane fusion in hormonal regulation of epithelial transport. Annu. Rev. Physiol. 48:213-223.

    Google Scholar 

  • Wilson, W. A. and M. M. Goldner. 1975. Voltage clamping with a single microelectrode. J. Neurobiol. 6: 411 - 422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lynn, J.W. (1989). Correlations between Time-Dependent and Cytochalasin B Affected Sperm Entry in Voltage-Clamped Sea Urchin Eggs. In: Nuccitelli, R., Cherr, G.N., Clark, W.H. (eds) Mechanisms of Egg Activation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0881-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0881-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0883-7

  • Online ISBN: 978-1-4757-0881-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics