Skip to main content

How do Sperm Activate Eggs in Urechis (as Well as in Polychaetes and Molluscs)?

  • Chapter
Mechanisms of Egg Activation

Abstract

In this chapter we summarize data showing that sperm acrosomal protein activates Urechis eggs, causing a fertilization potential and morphological changes like those produced by sperm. We then review the evidence in Urechis that Ca2+ uptake and acid release at fertilization cause rises in intracellular Ca2+ and pH necessary for activation, and propose that both ion movements occur primarily through voltage-gated channels that open during the fertilization potential. Available data from related species (polychaetes and molluscs) relating to this model are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. D. 1953. Fertilization and artificial activation in the egg of the surf-clam, Spisula solidissima. Biol. Bull. 105: 213–239.

    Article  CAS  Google Scholar 

  • Alliegro, M. and D. Wright. 1983. Polyspermy inhibition in the oyster, Crassostrea virginica. J. Exp. Zool. 227: 127–137.

    Article  CAS  Google Scholar 

  • Barish, M. and C. Baud. 1984. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J. Physiol. 352: 243–263.

    CAS  Google Scholar 

  • Baud, C., M. Moreau, and P. Guerrier. 1987. Ionic mechanism of the action potential and its disappearance after fertilization in the Dentalium egg. Dev. Biol. 122: 516–521.

    Article  CAS  Google Scholar 

  • Bloom, T., E. Szuts, and W. Eckberg. 1988. Insitol triphosphate, inositol phospholipid metabolism, and germinal vesicle breakdown in surf clam oocytes. Dev. Biol. 129: 532540.

    Google Scholar 

  • Brandriff, B., G. Moy, and V. Vacquier. 1978. Isolation of sperm bindin from the oyster (Crassostrea gigas). Gamete Res. 1: 89–99.

    Article  Google Scholar 

  • Brassard, M., H. Duclohier, M. Moreau, and P. Guerrier. 1988. Intracellular pH change does not appear as a prerequisite for triggering activation of Barnea candida (Mollusca, Pelecypoda) oocytes. Gamete Res. 20: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Byerly, L., R. Meech, and W. Moody, Jr. 1984. Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J. Physiol. 351: 199–216.

    CAS  Google Scholar 

  • Conklin, E. G. 1904. Experiments on the origin of the cleavage centrosomes. Biol. Bull. 7: 221–226.

    Article  Google Scholar 

  • Cross, N. L., T. Slezynger, and L. Z. Holland. 1985. Isolation and partial characterization of Urechis caupo egg envelopes. J. Cell Sci. 74: 193–205.

    PubMed  CAS  Google Scholar 

  • Dale, B. 1988. Primary and secondary messengers in the activation of ascidian eggs. Exp. Cell Res. 177: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Dale, B., L. J. DeFelice, and G. Ehrenstein. 1985. Injection of a soluble sperm fraction into sea urchin eggs triggers the cortical reaction. Experientia 41: 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  • Dubé, F. 1988. The relationships between early ionic events, the pattern of protein synthesis, and oocyte activation in the surf clam, Spisula solidissima. Dev. Biol. 126: 233–241.

    Article  Google Scholar 

  • Dubé, F. and P. Guerrier. 1982a. Activation of Barnea candida (Mollusca, Pelecypoda) oocytes by sperm or KCI but not by NH,C1 requires a calcium influx. Dev. Biol. 92: 408–417.

    Article  PubMed  Google Scholar 

  • Dubé, F. and P. Guerrier. 1982b. Acid release during activation of Barnea candida (Mollusca,Pelecypoda) ooycytes. Dev. Growth & Differ. 24: 163–171.

    Article  Google Scholar 

  • Dufresne-Dubé, L., B. Picheral, and P. Guerrier. I983a. An ultrastructural analysis of Dentalium vulgare (Mollusca, Scaphopoda) gametes with special reference to early events at fertilization. J. Ultrastruct. Res. 83: 242–257.

    Google Scholar 

  • Dufresne-Dubé, L., F. Dubé, P. Guerrier, and P. Couillard. 1983b. Absence of a complete block to polyspermy after fertilization of Mytilus galloprovincialis (Mollusca, Pelecypoda) oocytes. Dev. Biol. 97: 27–33.

    Article  PubMed  Google Scholar 

  • Eckberg, W. and A. Carroll. 1982. Sequestered calcium triggers oocyte maturation in Chaetopterus. Cell Differ. 11: 155–160.

    Article  CAS  Google Scholar 

  • Ehrenstein, G., B. Dale, and L. J. DeFelice. 1984. A soluble fraction of sperm triggers cortical granule exocytosis in sea urchin eggs. Biophys. J. 45: 23a.

    Google Scholar 

  • Fallon, J. F. and C. R. Austin. 1967. Fine structure of gametes of Nereis limbata (Annelida) before and after interaction. J. Exp. Zool. 166: 225–242.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. and D. Wolf. 1980. Membrane potential, pH and the activation of surf clam oocytes. Gamete Res. 3: 299–304.

    Article  CAS  Google Scholar 

  • Gilman, A. 1987. G Proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Gould, M. and L. Holland. 1984. Fertilization acid release in Urechis eggs II. The stoichiometry of Na’ uptake and H’ release. Dev. Biol. 104: 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Gould, M., J. L. Stephano, and L. Holland. 1986. Isolation of protein from Urechis sperm acrosomal granules that binds sperm to eggs and initiates development. Dev. Biol. 117: 306–318.

    Article  CAS  Google Scholar 

  • Gould, M. and J. L. Stephano. 1987. Electrical responses of eggs to acrosomal protein similar to those induced by sperm. Science. 235: 1654–1656.

    Article  PubMed  CAS  Google Scholar 

  • Gould-Somero, M. 1981. Localized gating of egg Na’ channels by sperm. Nature (Lond.) 291: 254–256.

    Article  Google Scholar 

  • Gould-Somero, M. and L. Z. Holland. 1975a. Oocyte differentiation in Urechis caupo. (Echiura): A fine structural study. J. Morphol. 147: 475–506.

    Article  PubMed  CAS  Google Scholar 

  • Gould-Somero, M. and L. Holland. 1975b. Fine structural investigation of the insemination response in Urechis caupo. Dev. Biol. 46: 358–369.

    Article  CAS  Google Scholar 

  • Gould-Somero, M., L. A. Jaffe, and L. Holland. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82: 426–440.

    Article  CAS  Google Scholar 

  • Guerrier, P., C. Guierrier, I. Neant, and M. Moreau. 1986a. Germinal vesicle nucleoplasm and intracellular pH requirements for cytoplasmic maturity in oocytes of the prosobranch mollusk Patella vulgata. Dev. Biol. 116: 92–99.

    Article  Google Scholar 

  • Guerrier, P., M. Brassart, C. David, and M. Moreau. 1986b. Sequential control of meiosis reinitiation by pH and Ca’ in oocytes of the prosobranch mollusk Patella vulgata. Dev. Biol. 114: 315–324.

    Article  CAS  Google Scholar 

  • Hagiwara S. and L. A. Jaffe. 1979. Electrical properties of egg cell membranes. Annu. Rev. Biophys. Bioeng. 8:385–416.

    Google Scholar 

  • Hagiwara, S. and S. Miyazaki. 1977. Changes in excitability of the cell membrane during “differentiation without cleavage” in the egg of the annelid, Chaetopterus pergamontaceus. J. Physiol. 272: 197–216.

    CAS  Google Scholar 

  • Holland, L., M. Gould-Somero, and M. Paul. 1984. Fertilization acid release in Urechis eggs. I. The nature of the acid and the dependence of acid release and egg activation on external pH. Dev. Biol. 103: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Holt, V. 1934. Further observations on the polarity of the eggs of Urechis caupo. Biol. Bull. 67:341–345.

    Google Scholar 

  • Humphreys, W. J. 1967. The fine structure of cortical granules in eggs and gastrulae of Mytilus edulis. J. Ultrastruct. Res. 17:314–326.

    Google Scholar 

  • Ii, I. and L. Rebhun. 1979. Acid release following activation of surf clam (Spisula solidissima) eggs. Dev. Biol. 72:195–200.

    Google Scholar 

  • Ikegami, S., T. S. Okada, and S. S. Koide. 1976. On the role of calcium ions in oocyte maturation in the polychaete Chaetopterus pergamentaceus. Dev. Growth & Differ. 18: 33–43.

    Article  Google Scholar 

  • Jaffe, L. A., M. Gould-Somero, and L. Z. Holland. 1979. Ionic mechanism of the fertilization potential of the marine worm, Urechis caupo (Echiura). J. Gen. Physiol. 73: 469–492.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. A., M. Gould-Somero, and L. Z. Holland. 1982. Studies of the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J. Cell Biol. 92: 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. A., R. Kado, and L. Muncy. 1985. Propagating potassium and chloride conductances during activation and fertilization of the egg of the frog, Rana pipiens. J. Physiol. 368: 227–242.

    CAS  Google Scholar 

  • Jaffe, L. F. 1983. Sources of calcium in egg activation: a review and hypothesis. Dev. Biol. 99:265–276.

    Google Scholar 

  • Jaffe, L. F. 1985. The role of calcium explosions, waves, and pulses in activating eggs. p. 127165. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.). Academic Press, Orlando.

    Google Scholar 

  • Johnston, R. and M. Paul. 1977. Calcium influx following fertilization of Urechis caupo eggs. Dev. Biol. 57:364–374.

    Google Scholar 

  • Kline, D. and R. Nuccitelli. 1985. The wave of activation current in the Xenopus egg. Dev. Biol. 111:471–487.

    Google Scholar 

  • Meech, R. and R. C. Thomas. 1987. Voltage-dependent intracellular pH in Helix aspersa neurones. J. Physiol. 390:433–452.

    Google Scholar 

  • Ohe, Y., H. Hayashi, and K. Iwai. 1979. Human spleen histone H2B. Isolation and amino acid sequence. J. Biochem. (Tokyo). 85: 615–624.

    CAS  Google Scholar 

  • Osanai, K. 1976. Parthenogenetic activation of Japanese Pablo eggs with sperm extract. Bull. Mar. Biol. Stn. Asamushi. 15:157–163.

    Google Scholar 

  • Pasteels, J. 1966. La reaction corticale de fecondation de l’oeuf de Nereis diversicoloretudiee au microscope electronique. Acta. Embryo!. & Morphol. Exp. 6:166–163.

    Google Scholar 

  • Pasteels, J. J. and E. deHarven. 1962. Etude au microscope electronique du cortex de l’oeuf de Barnea candida (mollusque bivalve) et son evolution au moment de la fecondation, de la maturation et de la segmentation. Arch. Biol. 73: 465–490.

    CAS  Google Scholar 

  • Paul, M. 1975. Release of acid and changes in light scattering properties following fertilization of Urechis caupo eggs. Dev. Biol. 43:299–312.

    Google Scholar 

  • Paul, M. and M. Gould-Somero. 1976. Evidence for a polyspermy block at the level of sperm-egg plasma membrane fusion in Urechis caupo. J. Exp. Zool. 196: 105–112.

    Article  CAS  Google Scholar 

  • Peaucellier, G. 1977a. Mise en evidence du role du calcium dans la reinitiation de la meiose des ovocytes de Sabellaria alveolata (L.) (annelide polychete). C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 285: 913–915.

    CAS  Google Scholar 

  • Peaucellier, G. I977b. Initiation of meiotic maturation by specific proteases in oocytes of the polychaete annelid Sabellaria alveolata. Exp. Cell Res. 106:1–14.

    Google Scholar 

  • Peaucellier, G. 1978. Acid release at meiotic maturation of oocytes in the polychaete annelid Sabellaria alveolata. Experientia 34: 789–790.

    Article  CAS  Google Scholar 

  • Rebhun, L. I. 1962. Electron microscope studies on the vitelline membrane of the surf clam, Spisula solidissima. J. Ultrastruct. Res. 6: 107–122.

    Article  CAS  Google Scholar 

  • Robertson, T. B. 1912. On the extraction of a substance from the sperm of a sea urchin (Stronglyocentrotus purpuratus) which will fertilize eggs of that species. Univ. Calif. Publ. Physiol. 4: 103–105.

    Google Scholar 

  • Schmidt, T., C. Patton, and D. Epel. 1982. Is there a role for the Cat` influx during fertilization of the sea urchin egg? Dev. Biol. 90: 284–290.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K. and T. Ando. 1972. The complete amino acid sequence of clupeine YI. J. Biochem. (Tokyo) 72:1419–1432.

    Google Scholar 

  • Tamaki, H. and K. Osanai. 1985. Re-initiation of meiosis in Mytilus oocytes with acrosome reaction product of sperm. Bull. Mar. Biol. Stn. Asamushi 18:11–23.

    Google Scholar 

  • Tyler, A. 1932. Changes in volume and surface of Urechis eggs upon fertilization. J. Exp. Zool. 63:155–173.

    Google Scholar 

  • Tyler, A. 1965. The biology and chemistry of fertilization. Am. Nat. 97: 309–334.

    Article  Google Scholar 

  • Tyler, A. and J. Schultz. 1932. Inhibition and reversal of fertilization in eggs of the echinoid worm, Urechis caupo. J. Exp. Zool. 63: 509–531.

    Article  CAS  Google Scholar 

  • Vacquier, V. and G. Moy. 1977. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. USA 74: 2456–2460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gould, M., Stephano, J.L. (1989). How do Sperm Activate Eggs in Urechis (as Well as in Polychaetes and Molluscs)?. In: Nuccitelli, R., Cherr, G.N., Clark, W.H. (eds) Mechanisms of Egg Activation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0881-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0881-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0883-7

  • Online ISBN: 978-1-4757-0881-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics