Structural Effects on Superconductivity

  • K. L. Ngai
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)


The aim of the article is to discuss some aspects of the effects of structure and structural transformations of solids on their superconductive properties.


Structural Effect Superconducting Transition Temperature Tungsten Bronze Surface Plasmon Mode Soft Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Ginzburg, Usp. Fiz. Nauk 101, 185 (1970).ADSCrossRefGoogle Scholar
  2. 1a.
    V. L. Ginzburg, Sov. Phys. - Usp. 13, 335 (1970)MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    V. L. Ginzburg and D. A. Kirzhnits, in Soviet-American Symposium on Electron Theory of Solids, Leningrad, 1971 (unpublished).Google Scholar
  4. 3.
    D. Allender, J. Bray and J. Bardeen, Phys. Rev. B7, 1020 (1973).ADSCrossRefGoogle Scholar
  5. 4.
    J. C. Inkson and P. W. Anderson, Phys. Rev. Comments and Addenda B8, 4429 (1973).ADSCrossRefGoogle Scholar
  6. 5.
    D. Allender, J. Bray and J. Bardeen, ibid, p. 4434.Google Scholar
  7. 6.
    A. D. Wadsley in “Non-Stoichiometric Compounds”, L. Mandelcorn, ed., Academic Press, New York (1964).Google Scholar
  8. 7.
    C. J. Raub, A. R. Sweedler, M. A. Jensen, S. Broadsten and B. T. Matthias, Phys. Rev. Letters 13, 746 (1964)ADSCrossRefGoogle Scholar
  9. 7a.
    A. R. Sweedler, C. J. Raub and B. T. Matthias, Phys. Letters 15, 108 (1965)ADSCrossRefGoogle Scholar
  10. 7b.
    J. P. Remeika, T. H. Geballe, B. T. Matthias, A. S. Cooper, G. W. Hall and E. M. Kelly, Phys. Letters 24A, 565 (1967).ADSCrossRefGoogle Scholar
  11. 8.
    H. R. Shanks, Solid State Commun. 15, 753 (1974).ADSCrossRefGoogle Scholar
  12. 9.
    B. C. Hyde and M. O’Keefe, Acta Cryst. A29, 243 (1973).CrossRefGoogle Scholar
  13. 10.
    P. W. Anderson, B. I. Halperin and C. Varma, Phil. Mag. 25, 1 (1972).ADSzbMATHCrossRefGoogle Scholar
  14. 11.
    W. Cochran, Adv. Phys. 9, 387 (1960)ADSCrossRefGoogle Scholar
  15. 11a.
    P. W. Anderson, Fiz Dielect, G. I. Skanawi, ed., Academy of Sciences, Moscow (1960).Google Scholar
  16. 12.
    M. H. Cohen and D. H. Douglass, Jr., Phys. Rev. Letters 19, 118 (1967).ADSCrossRefGoogle Scholar
  17. 13.
    P. W. Anderson in Proceedings of the NATO Advanced Study Institute on Elementary Excitations in Atoms, Molecules and Solids, Antwerp, Belgium (1973).Google Scholar
  18. 14.
    H. Frohlich, J. Phys. C1, 544 (1968).ADSGoogle Scholar
  19. 15.
    H. Gutfreund and Y. Unna, J. Phys. Chem. Solids 34, 1523 (1973).ADSCrossRefGoogle Scholar
  20. 16.
    A. Rothwarf, Phys. Rev. B2, 3560 (1970).ADSCrossRefGoogle Scholar
  21. 17.
    For a review see E. N. Economou and K. L. Ngai, to appear as a chapter in “Advances in Chemical Physics”, edited by S. A. Rice and I. Prigogine, John Wiley and Sons, New York (1974).Google Scholar
  22. 18.
    E. N. Economou, Phys. Rev. 182, 539 (1969).ADSCrossRefGoogle Scholar
  23. 19.
    J. C. Swihart, J. App l. Phys, 32, 461 (1961).ADSCrossRefGoogle Scholar
  24. 20.
    K. L. Ngai, Phys. Rev. 182, 555 (1969).ADSCrossRefGoogle Scholar
  25. 21.
    K. L. Ngai and E. N. Economou, unpublished.Google Scholar
  26. 22.
    P. Morel and P. W. Anderson, Phys. Rev. 125 , 1263 (1962).ADSCrossRefGoogle Scholar
  27. 23.
    A. L. Fetter, to be published.Google Scholar
  28. 24.
    E. N. Economou, Phys. Rev. 182, 539 (1969).ADSCrossRefGoogle Scholar
  29. 25.
    x (Q, w) does not depend on a because in the RPA x depends only on the electronic eigenenergy E = h2Q2 which is independent on a. Qa 2mGoogle Scholar
  30. 26.
    F. Stern, Phys. Rev. Letters 18, 546 (1967).CrossRefGoogle Scholar
  31. 27.
    W. L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  32. 28.
    The quantity λ is expected to change as we go from the bulk to a very thin film structure. Consequently, a calculation of Tc in a given layered material requires the calculation of λ for this layered structure as well as the calculation of μ.Google Scholar
  33. 29.
    C. C. Tsuei and W. L. Johnson, Phys. Rev. B9, 4742 (1974).ADSCrossRefGoogle Scholar
  34. 30.
    G. Deutscher, J. P. Farges, F. Meunier and P. Nedellec, Phys. Letters 35A, 265 (1971).ADSCrossRefGoogle Scholar
  35. 31.
    K. L. Ngai and E. N. Economou, Phys. Rev. B4, 2132 (1971)ADSCrossRefGoogle Scholar
  36. 31a.
    K. L. Ngai, E. N. Economou and Morrel H. Cohen, Phys. Rev. Letters 24, 61 (1970).ADSCrossRefGoogle Scholar
  37. 32.
    K. L. Ngai, E. N. Economou and Morrel H. Cohen, Phys. Rev. Letters 22, 1375 (1969).ADSCrossRefGoogle Scholar
  38. 33.
    A. J. Bevolo, H. R. Shanks, P. H. Sidles and G. C. Danielson, Phys. Rev. B9, 3220 (1974).ADSCrossRefGoogle Scholar
  39. 34.
    J. C. Slater, “Quantum Theory of Molecules and Solids”, Vol. 2, McGraw Hill, New York (1965).zbMATHGoogle Scholar
  40. 35.
    H. R. Shanks, Jour. Cryst. Growth 13/14, 433 (1972).CrossRefGoogle Scholar
  41. 36.
    Since the triangular tunnels are too small to contain M atoms, the Tl configuration has available per unit cell one square tunnel and four pentagonal ones, whereas T2 has nine squares. The outer tunnels are shared with other unit cells, so the ratio becomes 3:5, hence xmax(T1) =. 6.Google Scholar
  42. 37.
    The hexagonal phase consists of only triangular and hexagonal tunnels (see Ref. 6, p. 139), and thus cannot be derived geometrically from T2 in the same manner as Tl. The free energy arguments made in the text are nonetheless valid for this phase.Google Scholar
  43. 38.
    Eq. (4) assumes uncorrelated behavior of the M atoms. We note that a linear dependence of w2 on x has been observed for a TO phonon in the nons to ichiometric f erro electric PZT by G. Burns and B. A. Scott, Phys. Rev. Letters 25, 1191 (1970), as described in A. Pinczuk, Solid State Comm. 12, 1035 (1973).ADSCrossRefGoogle Scholar
  44. 39.
    Contributions from all possible configurational paths between Tl and T2, or from all combinations of phases of rotating groups of WO6 octahedra, are included in the tunneling matrix element V (x).Google Scholar
  45. 40.
    A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinskii, “Quantum Field Theoretical Methods in Statistical Physics”, second edition, Pergamon, New York (1965).zbMATHGoogle Scholar
  46. 41.
    W. L. McMillan, Phys. Rev. 167, 331 (1968). The general form of this equation can be derived analytically from the Eliashberg gap equations, although to obtain the constants numerical calculations based on the phonon spectrum of Nb were used. The results obtained in thispaper do not depend on the exact values of these constants.ADSCrossRefGoogle Scholar
  47. 42.
    D. J. Scalapino in “Superconductivity”, R. D. Parks, ed., Dekker, New York (1969).Google Scholar
  48. 43.
    In Ref. 8 it is pointed out that specific heat measurements on cubic Na W0 yield N(0) proportional to x, and that preliminary susceptibility measurements in the Tl phase of NaxWO3 give the same result. In a rigid band model this would require an extremely rapid variation of N(E) vs. E.Google Scholar
  49. 44.
    Preliminary data on Tc (x) in the hexagonal phase for KxWO3 and RbxWO3 suggests behavior of the type shown in Fig. 6(b), H. R. Shanks and M. J. Sienko, private communications.Google Scholar
  50. 45.
    M. J. Rice and S. Strassler, Solid State Commun. 13, 125 (1973)ADSCrossRefGoogle Scholar
  51. 45a.
    P. A. Lee, T. M. Rice and P. W. Anderson, Solid State Commun. 14, 703 (1974).ADSCrossRefGoogle Scholar
  52. 46.
    J. F. Scott, R. F. Leheny, J. P. Remeika and A. R. Sweedler, Phys. Rev. B2, 3883 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • K. L. Ngai
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations