Theory and Application of Inverse Transport Coefficients

  • N. H. March
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)


The ideas behind the theory of inverse transport coefficients are outlined by considering two classical examples:
  1. (a)

    Self-diffusion in a classical liquid. Here the diffusion constant D is related to a friction constant ζ. In turn, ζ is connected with the force-force correlation function.

  2. (b)

    The electrical resistivity of a classical plasma. The quantum-mechanical generalization of the forceforce correlation function is then introduced. This correlation function is shown explicitly to lead to the correct electrical resistivity of metals and metallic alloys for

  3. (c)

    Dilute impurity scattering, both in the Born approximation and for arbitrary phase shifts.

  4. (d)

    Weak scattering (Ziman) theory of liquid metals Approximations applicable under strong scattering conditions are also outlined.

  5. (e)

    The Kondo effect arising from conduction electron scattering from a localized magnetic moment.



Electrical Resistivity Resistance Minimum Kondo Effect Velocity Autocorrelation Function Spin Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Ballentine and R. Heaney, 1974, J.Phys. C7, 1985ADSGoogle Scholar
  2. W.G. Chambers, 1973, J.Phys. C6, 2586ADSGoogle Scholar
  3. S.F. Edwards, 1965, Proc.Phys.Soc.Lond. 86, 977ADSCrossRefGoogle Scholar
  4. S.F. Edwards and J.J. Sanderson, 1961, Phil.Mag. 6, 71MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. R. Evans, B.L. Gyorffy, N. Szabo and J.M. Ziman, 1973, In Proc.Conf. The Properties of Liquid Metals Ed. S. Takeuchi, (Taylor and Francis, London)Google Scholar
  6. A.L. Fetter and J.D. Walecka, 1971, Quantum theory of manyparticle systems (McGraw-Hill, San Francisco)Google Scholar
  7. T. Gaskell and N.H. March, 1970, Phys.Lett. 33A, 460CrossRefGoogle Scholar
  8. G.D. Gaspari and B.L. Gyorffy, 1972, Phys.Rev.Lett. 28, 801ADSCrossRefGoogle Scholar
  9. H.G. Ghassib, R. Gilbert and G.J. Morgan, 1973, J.Phys. C6, 184Google Scholar
  10. R. Harris, 1972, J.Phys. C5, L56ADSGoogle Scholar
  11. K. Huang, 1948, Proc.Phys.Soc. 60, 161ADSCrossRefGoogle Scholar
  12. W. Jones, 1974, J.Phys. C7, 1974 1974, J.Phys. C7, 3357ADSGoogle Scholar
  13. J.O. Linde, 1939, Dissertation, StockholmGoogle Scholar
  14. N.H. March and A.M. Murray, 1960, Phys.Rev. 120, 830MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. N.F. Mott, 1936, Proc. Camb.Phil.Soc. 32, 281ADSzbMATHCrossRefGoogle Scholar
  16. J.S. Rousseau, 1971, J.Phys. C4, L351ADSGoogle Scholar
  17. J.S. Rousseau, J.C. Stoddart and N.H. March, 1972, J.Phys. C5, L175, 1973, Proc.Conf. The Properties of Liquid Metals Ed. S.Takeuchi (Taylor and Francis) London p.249ADSGoogle Scholar
  18. R.N. Silver and T.C. McGill, 1974, Phys.Rev. B9, 272ADSCrossRefGoogle Scholar
  19. N. Szabo, 1972, J.Phys. C5, L241 1973, J.Phys. C6, L437ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • N. H. March
    • 1
  1. 1.Physics DepartmentImperial CollegeLondonEngland

Personalised recommendations