Skip to main content

Optical Determination of Hot Carrier Distribution Functions

  • Chapter
Linear and Nonlinear Electron Transport in Solids

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 17))

  • 378 Accesses

Abstract

In dealing with a hot carrier situation, the most important problem to be solved both experimentally and theoretically is the determination of the carrier distribution function (1). The shape of the distribution function, e.g. its energy (E) and wavevector (k) dependence directly reflects the interactions of the carriers with the lattice. A transport property like the drift velocity always represents an integral average weighted by the distribution function (DF) and thus does not more contain the full information which is buried in the distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a comprehensive review on high field transport in semiconductors see : E.M. Conwell : in Solid State Physics, Suppl. 9, ed. F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press N.Y.) 1967. Theoretical methods to obtain high field distribution functions are reviewed in : W. Fawcett : in Electrons in Crystalline Solids (IAEA, Vienna) 1973, p. 531. See also : J.T. Devreese, R. Evrard, Lectures at the present Institute.

    Google Scholar 

  2. W. Jantsch and H. Heirich, Solid State Commun. 13, 715 (1973).

    Article  ADS  Google Scholar 

  3. J.C. McGroddy and O. Christensen, Bull. Am. Phys. Soc. Ser. II, 17, 325 (1972).

    Google Scholar 

  4. J.C. Hwang, J. Appl. Phys. 41, 2668 (1970).

    Article  ADS  Google Scholar 

  5. W.E. Pinson, and R. Bray, Phys. Rev. 136, A 1449 (1964).

    Article  ADS  Google Scholar 

  6. A.C. Baynham and E.G.S. Paige, Phys Letters 6, 7 (1963).

    Article  ADS  Google Scholar 

  7. R. Bray and W.E. Pinson, Phys. Rev. Letters 11, 502 (1963).

    Article  Google Scholar 

  8. M.A. Vasileva, L.E. Vorob’ev, V.I. Stafeev, Sov. Phys. Semiconductors 1, 273 (1967).

    Google Scholar 

  9. O. Christensen, Phys. Rev. 87, 763 (1973).

    Google Scholar 

  10. H.F. Budd, Phys. Rev. 158, 798 (1967).

    Article  ADS  Google Scholar 

  11. P.A. Wolff, in Light Scattering Spectra of Solids (Springer Verlag N.Y.) 1969, p.273.

    Book  Google Scholar 

  12. D. Healey and T.P. McLean, Phys. Letters 29A, 607 (1969).

    Article  ADS  Google Scholar 

  13. A. Mooradian and A.L. McWorther in: Proc. Int. Conf. Physics of Semiconductors, Cambridge, Mass. (U.S.A.E.C.) 1970, p. 380. A. Mooradian : in : Laser Handbook, ed. F.T. Arecchi and E.O. Schulz-Dubois (North Holland) 1972, p.1409.

    Google Scholar 

  14. P.D. Southgate, D.S. Hall, and A.B. Dreeben J. Appl. Phys. 42, 2868 (1971).

    Article  ADS  Google Scholar 

  15. S.R. Thomas and H.Y. Fan, Phys. Rev. B9, 4295 (1974).

    Article  ADS  Google Scholar 

  16. J. Shah and R.C.C. Leite, Phys. Rev. Letters 24, 1304 (1969).

    Article  ADS  Google Scholar 

  17. J. Shah Phys. Rev. B10, 3697 (1974). see also : J. Shah, Phys. Rev. B10, 562 (1974). J. Shah, R.F. Leheny, and W.F. Brinkman , Phys. Rev. B10, 659 (1 974).

    Article  ADS  Google Scholar 

  18. J. Shah, R.C.C. Leite, and J.F. Scott, Solid State Commun. 8, 1089 (1970).

    Article  ADS  Google Scholar 

  19. I.B. Levinson, Sov. Phys. Semiconductors 7, 1121 (1974).

    Google Scholar 

  20. P. Motisuke, C.A. Argüello, and R.C.C. Leite, Solid State Commun. 16, 763 (1975).

    Article  ADS  Google Scholar 

  21. R. Ulbrich, Phys. Rev. B8, 5719 (1973).

    Article  ADS  Google Scholar 

  22. E. Gornik, Phys. Rev. Letters 29, 595 (1972), Optics and Laser Thechnology 121 (1975).

    Article  ADS  Google Scholar 

  23. J. Waldman, T.S. Chang, H. Fetterman, G. Stillman, C. Wolffe, Conference Digest (Conf. on Submillimeter waves and their applications) Atlanta 1974.

    Google Scholar 

  24. G. Bauer, M. Overhamm, P. Grosse, E. Gornik, W. Müller, H.W. Pötzl, to be published.

    Google Scholar 

  25. E. Yamada, Proc. Inf. Conf. Phys. Semiconductors Warsaw (P.W.N. Sientific Publishers) Warsaw 1972.

    Google Scholar 

  26. F. Stern, in Solid State Physics Ced. F. Seitz and D. Turnbull, Academic N.Y.) 1963 p. 370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, G. (1976). Optical Determination of Hot Carrier Distribution Functions. In: Devreese, J.T., van Doren, V.E. (eds) Linear and Nonlinear Electron Transport in Solids. NATO Advanced Study Institutes Series, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0875-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0875-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0877-6

  • Online ISBN: 978-1-4757-0875-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics