Conductivity via Nonequilibrium Statistical Physics

  • G. J. Papadopoulos
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)


In these lectures we shall sketch the philosophy behind nonequilibrium Statistical Physics and illustrate the procedure using an exactly soluble model. We shall concentrate on the question of direct conductivity and mean energy.


Density Matrix Average Momentum External Interaction Charged Oscillator Harmonic Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . Feynman, R.P., Hellwarth, R.W., Iddings, C.K. and Platzman, P.M., Phys. Rev. 127, 1004 (1962)ADSzbMATHCrossRefGoogle Scholar
  2. 1a.
    Thornber, K.K. and Feynman, R.P., Phys. Rev., B1, 4099 (1966).Google Scholar
  3. 1b.
    Extensive work concerning the optical properties and conductivity within the polaron model has been carried out by Devreese and co-workers: J. Devreese, J. De Sitter and M. Goovaerts, Phys. Rev. B5, 2367 (1972).ADSCrossRefGoogle Scholar
  4. 1c.
    W. Huybrechts, J. De Sitter and J.T. Devreese, Solid State Comm. 13, 163 (1973).ADSCrossRefGoogle Scholar
  5. 1d.
    L.F. Lemmens, J. De Sitter and J. T. Devreese, Phys. Rev. B, 8, 2717 (1973).ADSCrossRefGoogle Scholar
  6. 1e.
    E. Kartheuser, R. Evrard, J.T. Devreese, Phys. Rev. Letters, 22, 94 (1969)ADSCrossRefGoogle Scholar
  7. 1g.
    J.T. Devreese, J. Van Royen and L.F. Lemmens : Sum Rule for Optical Absorption (Pre-print).Google Scholar
  8. 1f.
    J.T. Devreese, R.Evrard and E. Kartheuser: Self Consistent Equation of Motion Approach for Polarons (To appear in Phys. Rev. B).Google Scholar
  9. 1.
    1h. Also the conductivity in the polaron problem has been treated with the Boltzmann equation by J.T. Devreese and R. Evrard: The momentum Distribution of Electrons in Polar Semiconductors for High Electric Field’ (Preprint). Abstract: Bull. Am. Phys. Soc., EG5, 404 (1975).Google Scholar
  10. 2.
    Mazur, P. and Brown, E., Physica, 30 1973 (1964)MathSciNetADSCrossRefGoogle Scholar
  11. 3.
    Mazur, P. and Siskens, Th.J., Physica, 47, 245 (1970)ADSCrossRefGoogle Scholar
  12. 4.
    Storer, R.G., J. Math. Phys., 12, 1296 (1971)ADSCrossRefGoogle Scholar
  13. 5.
    Deutch, J..M. and Silbey, R., Phys. Rev. A3, 2049 (1971)ADSCrossRefGoogle Scholar
  14. 5a.
    Ford, G.W., Kac, M. and Mazur, P., J. Math. Phys. 6, 505 (1965)MathSciNetADSCrossRefGoogle Scholar
  15. 5b.
    Fujiwara, I., Hemmer, P.C. and Wergeland, H., Prog. Theor. Phys. Suppl. Nos 37 and 38, 149 (1966)ADSCrossRefGoogle Scholar
  16. 5c.
    Heurta, M.A. and Robertson, H.S., J. Stat. Phys , 3, 171 (1971)ADSCrossRefGoogle Scholar
  17. 5d.
    Mazur, P. and Montroll, E., J. Math. Phys. 1, 70 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 5f.
    Klein, G. and Prigogine, I., Physica 19, 1053 (1953)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 5g.
    Prigogine, I., and Bingen, R., Physica 21, 299 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 5n.
    For the electrical analogue of a harmonic chain lattice see: Stevens, K.W.H., Proc. Phys. Soc. 77, 515 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 6.
    Rubin, R.J. , J. Math. Phys.,1, 309 (1960)ADSCrossRefGoogle Scholar
  22. 6a.
    Rubin, R.J., J. Math. Phys. 2, 373 (1961)ADSCrossRefGoogle Scholar
  23. 6b.
    Turner, R.E., Physica 26, 274, (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 7.
    Ullersma P., Physica 32, 74, (1966)MathSciNetADSCrossRefGoogle Scholar
  25. 8.
    Papadopoulos, G.J., Physica 74, 529 (1974)ADSCrossRefGoogle Scholar
  26. 9.
    Feynman, R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw-Hill pp. 63–64. (New York,1965)zbMATHGoogle Scholar
  27. 10.
    Schrödinger, E., Ann. Physik 44, 196 (1914)Google Scholar
  28. 11.
    Papadopoulos, G.J., J. Phys. A6, 1479 (1973)ADSGoogle Scholar
  29. 12.
    Hemmer, P.C. and Wergeland, H.K., Norske Vindensk.Selsk, Forhandl., 30, 137 (1957)MathSciNetGoogle Scholar
  30. 13.
    Gradstein, I.S., and Ryzhik, I.M., Tables of Integrals, Series and Products, Academic Press, p. 419 (London,1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • G. J. Papadopoulos
    • 1
    • 2
  1. 1.University of LeedsLeedsUK
  2. 2.E.S.I.S.Universitaire Instelling AntwerpenWilrijkBelgium

Personalised recommendations