Advertisement

Functional Integrals

  • G. J. Papadopoulos
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

It has by now become abundantly clear, from the lectures of Professor Devreese [1] and Professor Thornber [2], that the propagators associated with certain Hamiltonians are of crucial importance in handling transport theory problems.

Keywords

Coherent State Path Integral Occupation Number Discrete Form Functional Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.T. DEVREESE, An Introduction to the Use of Path Integrals in Transport Theory, Proc. Antwerp Summer School (1975), present volume. Eds.: J.T. Devreese and V.E. Van Doren.Google Scholar
  2. 2.
    K.K. THORNBER, Aspects of Linear and Nonlinear Electronic Conduction in Dissipative Media, Proc. Antwerp Summer School (1975), present volume. Eds.: J.T. Devreese and V.E. Van Doren.Google Scholar
  3. 3.
    R. ABE, Busseiron Kenk-yu, 79, 101 (1954)Google Scholar
  4. 3a.
    R. ABE, The original formulation of the Lagrangian based path integrals given by Feynman, can be found in: R.P. FEYNMAN and A.R. HIBBS, “Quantum Mechanics and Path Integrals”, McGraw-Hill (New York, 1965).Google Scholar
  5. 4.
    S.S. SCHWEBER, J. Math. Phys. 3, 831 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 4a.
    M. REVZEN, Phys. Rev. 185, 337 (1969)ADSCrossRefGoogle Scholar
  7. 4b.
    M. REVZEN, A.J.P., 38, 611 (1970)ADSGoogle Scholar
  8. 4c.
    A. CASHER, D. LURIE and M. REVZEN, J. Math. Phys., 9, 1312 (1969).ADSCrossRefGoogle Scholar
  9. 4d.
    R.J. GLAUBER, Phys. Rev. 136, 2766 (1963)MathSciNetADSCrossRefGoogle Scholar
  10. 4e.
    Y. TAKAHASHI and F. SHIBATA, J. Phys. Soc. Japan, 38, 656 (1975)MathSciNetADSCrossRefGoogle Scholar
  11. 4f.
    J.R. KLAUDER, Ann. Phys. (N.Y.), 11, 123 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 4g.
    B.R. MOLLOW, Phys. Rev., 162, 1256 (1967)ADSCrossRefGoogle Scholar
  13. 4h.
    W.H. LOUISSELL, “Radiation and Noise in Quantum Electronics”, McGraw-Hill (New York, 1964)Google Scholar
  14. 4i.
    S.F. EDWARDS and K.F. FREED, J. Phys. C, 3, 739 (1970).ADSCrossRefGoogle Scholar
  15. 5.
    D. LANGRETH, Linear and Nonlinear Response Theory and Applications, Proc. Antwerp Summer School (1975), present volume. Eds.: J.T. Devreese and V.E. Van Doren.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • G. J. Papadopoulos
    • 1
    • 2
  1. 1.University of LeedsLeedsUK
  2. 2.E.S.I.S.Universitaire Instelling AntwerpenWilrijkBelgium

Personalised recommendations